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Abstract

Many state-of-the-art fusion methods, combining details in images taken under different exposures

into one well-exposed image, can be found in the literature. However, insufficient study has been

conducted to explore how perceptual factors can provide viewers better Quality of Experience (QoE) on

fused images. We propose two perceptual quality measures: perceived local contrast and color saturation,

which are embedded in our novel hierarchical multivariate Gaussian Conditional Random Field (CRF)

model, to illustrate improved performance for multi-exposure fusion. We show that our method generates

images with better quality than existing methods for a variety of scenes.

Index Terms

Multi-exposure fusion, human perception, QoE, conditional random field, MAP estimation

I. INTRODUCTION

Human perceptual factors have attracted increasing attention in research on visual communication

techniques [1], [2]. The rationale behind this trend is to appeal to human observers with high visual

quality images, videos, and graphics. Thus, it is important for applications to take the human visual

system into consideration when designing image processing algorithms. Contrast and color are generally

recognized to be important parameters [3], [4] in image quality. Motivated by these research findings,

we study the visual impact of perceived local contrast and color saturation on fused images.
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(a) (b)

Fig. 1. Details from multi-exposure images in the source sequence are combined into a single image. Because of the high

dynamic range of the scene, a single image suffers from either over-exposure or under-exposure in some regions (e.g., in the

insets) and fails to present all the details. Using our fusion technique, details from different regions in each source image are

transferred into one well-exposed image. (a) Source images taken under different exposures; (b) Fused image.

Multi-Exposure Fusion (MEF) is necessary because a conventional digital camera often produces

images with insufficient details on a natural scene due to the incompatibility of its Low Dynamic Range

(LDR) relative to the High Dynamic Range (HDR) of the scene. As shown in Figure 1(a), neither of

the source images captured under different exposures is able to present all of the details in the scene,

although the individual images combined contain complementary high-quality details of the scene like

in Figure 1(b). This composition of local details can be achieved using MEF techniques [5], [6] or HDR

imaging techniques [7]. In the HDR imaging approach, a radiance map of the scene is constructed, which

allows a physical interpretation of the pixel values, but the process needs to adapt the reconstructed HDR

image on consumer displays for viewing by applying Tone Mapping (TM) methods [8], [9]. In contrast,

the MEF approach bypasses the HDR generation process and directly builds a visually appealing result

based on certain perceptual criteria requiring minimal user intervention.

We propose a novel MEF method based on perceptual quality measures that exploit both contrast and

color information. In order to deliver maximum image details, we model the probability for the human

visual system to detect local contrast based on physiological findings. Incorporating these perceptual

measures, the optimal fusion weights are then derived using Maximum A Posteriori (MAP) estimation

in our Hierarchical Multivariate Gaussian Conditional Random Field (HMGCRF) model. The remainder

of this paper is organized as follows. Section II presents the background of MEF. Section III explains

our proposed Quality of Experience (QoE) based MAP-HMGCRF fusion method. Experimental results

are summarized in Section IV. Conclusions and future work are given in Section V.
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II. BACKGROUND OF MULTI-EXPOSURE FUSION

The history of image fusion research dates back to 1984 when Burt [10] proposed Laplacian pyramid-

based fusion for binocular grayscale images. In 1993, Burt and Kolczynski [11] applied this method

to fuse multi-exposure grayscale images. Mertens et al. [5] used local variation, saturation and well-

exposedness based measures in a Laplacian pyramid-based fusion scheme for color images. Raman and

Chaudhuri [12] estimated the fused pixel values by solving an optimization problem. Local variation and

gradient based measures were used in [13] to infer the luminance components of the fused pixels in a

Bayesian model. A gradient-directed MEF method [14] was proposed for dynamic scenes. In contrast, our

focus is the study of perceptual factors on static scenes. In our previous work [6], a probabilistic fusion

method was proposed, which applies local variation and neighborhood consistency computation. Although

the technique generates high-quality results, we believe that images delivered by MEF techniques can

be more visually appealing by considering human perceptual parameters. To address some common

issues, which include loss of local details and poor color scheme leading to the loss of vividness, we

propose using two perceptual quality measures (i.e., perceived local contrast and color saturation) to give

a more accurate evaluation of pixel contributions, in order to achieve higher-quality fused images. After

validating the effectiveness of the perceptual measures using our previous model [6], we then propose a

more flexible fusion model, where the fusion weights are computed as the MAP estimate in a hierarchical

multivariate Gaussian CRF model to further illustrate the effectiveness of the perceptual parameters.

III. QOE-BASED MULTI-EXPOSURE FUSION

A. Overview

Given a source image sequence, the contributions from individual pixels to the fused image are

perceptually tuned by two locally-defined quality measures, i.e., perceived local contrast (Section III-B)

and color saturation (Section III-C). First, physical contrasts are calculated for each pixel in the luminance

channel. Visual responses to these physical contrasts, i.e., perceived contrasts, are then modeled using

a transducer function followed by a psychometric function. These perceived contrasts, together with

color saturation, are used in our MAP-HMGCRF model for pixel contribution evaluation, where the

contributions are modeled as the MAP estimate of a multidimensional potential field (Section III-E).

B. Perceived Local Contrast

Earlier physiological studies of contrast sensitivity in three opponent color channels, i.e., black-white

(luminance), red-green, and yellow-blue, show that luminance sensitivity is normally higher than chro-
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matic sensitivity [15], which inspires us to employ a luminance contrast measure to help preserve details.

Local contrast represents the perception of local luminance variations with respect to the surrounding

luminance, and different measures of local contrast exist in the literature. Simple definitions like Weber

contrast normally assume small targets on a large uniform background [16]. In order to deal with complex

images of natural scenes in MEF, we modified the local band-limited contrast proposed by Peli [16],

which defines local contrast as the ratio between the band-pass filtered image and the low-pass filtered

image. We perform contrast calculation in the luminance channel of the LHS color space.

If we directly use Peli’s contrast in MEF, under-exposed regions, which are normally noisy, may produce

stronger responses than well-exposed regions. This makes under-exposed regions contribute more to the

fused image and reduce the overall brightness. Thus, if the local background luminance at a pixel is

below a threshold θ, we weight its contrast by the background luminance to suppress noise. When θ is

no less than 0.2, the fused image is brighter and preserves more details. When θ is above 0.4, the image

shows less vivid colors. Therefore, we suggest using θ ∈ [0.2, 0.4].

When combined with the Gaussian pyramid representation of a luminance image, we can construct

a contrast pyramid. Let Cn
i,k denote the weighted contrast at the i-th pixel location at level n of the

Gaussian pyramid, where n ∈ [0, Nc − 1]. Then, Cn
i,k can be calculated as:

Cn
i,k =

 Gn
i,k − [φ ∗Gn

k ]i, [φ ∗Gn
k ]i < θ;

(Gn
i,k − [φ ∗Gn

k ]i)/[φ ∗Gn
k ]i, otherwise.

(1)

where Gn
k denotes the n-th level of the Gaussian pyramid and Gn

i,k the i-th coefficient in Gn
k ; and we

take φ as a 5× 5 Gaussian filter with variance 1. Figure 2 gives a comparison between our weighted and

Peli’s contrasts. Peli’s contrast produces noisy responses in the under-exposed regions of the low-exposure

image, which reduces the brightness of the fused image. This issue is resolved using our weighted contrast.

Furthermore, in order to obtain the best representative information from lower levels, the contrast

magnitude Ĉn
i,k at a higher-level coefficient is determined as the maximum contrast magnitude among

those associated with that coefficient and its corresponding lower-level coefficients.

1) Transducer and Psychometric Functions: The nonlinearity of human perception of contrast has

been studied by many researchers [17]–[19]. According to [17], contrast perception can be considered

as a two-stage procedure. In the first stage, the stimulus contrast is mapped to the internal/physiological

response of the sensory system via a transducer function µ. In the second stage, the probability of

correctly discriminating a stimulus with certain contrast from the standard stimulus with a fixed contrast

Cs is expressed by a psychometric function Ψ, where we take Cs = 0. A formal relationship between the

psychometric function Ψ and the transducer function µ was developed in [18], where Ψ is determined
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(a) (b) (c) (d)

Fig. 2. Comparison of Peli’s and our weighted contrasts for MEF. Peli’s contrast produces noisy responses in the under-exposed

regions of the low-exposure image, which reduces the brightness of the fused image. This issue is resolved using our weighted

contrast. (a) High- and low-exposure source images; (b) Magnitude of Peli’s contrast; (c) Magnitude of our weighted contrast;

(d) Fusion results using Peli’s (left) and our weighted (right) contrasts (both with transducer and psychometric functions applied).

by µ and the distribution of internal responses. We normalize Ĉn
i,k’s to [0, 1] before using it in µ to fulfill

the assumption of the stimulus contrast range in [18].

Because the most representative information is passed upwards along the contrast pyramids, the trans-

ducer and psychometric functions are only applied to level Nc−1, which also reduces the computational

cost. We adopt the transducer function proposed in [17]:

µ(ĈNc−1
i,k ) =

(ĈNc−1
i,k SE)p

(ĈNc−1
i,k SI)q + Z

, (2)

where SE = 100 is a constant; SI , p, q, Z are four free parameters, which we set to the mean values

reported from the experiments in [17], i.e., SI = 75.70, p = 4.03, q = 3.59, Z = 24.87. Two other

forms of µ were also tested. The three-parameter function in [18] did not produce comparable results.

Wilson’s [19] transducer function for threshold and suprathreshold vision produced similar results. We

adopted the psychometric function for contrast detection proposed in [18]:

Ψ(ĈNc−1
i,k ) = 1/(1 + exp(−µ(ĈNc−1

i,k )/b)), (3)

where we take b =
√

6/π as in [18]. In our implementation, Ψ(ĈNc−1
i,k )’s are normalized to [0, 1].

C. Color Saturation

Since the perceived local contrast measure only works in the luminance channel, using it alone may

not produce satisfactory results for color images in some cases where high local contrasts are achieved

at the cost of low colorfulness/saturation. Objects captured at proper exposures normally exhibit more

saturated colors. For instance, as shown in Figure 1, the red autobot symbol in one source image presents

more saturated red than in the other. Therefore, we employ color saturation as another quality measure.
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We incorporated the saturation definition in the LHS color space [4] to measure the colorfulness of a

given pixel: S = 1− 3 min(R,G,B)/(R+G+B), where S ∈ [0, 1] and R,G,B denote the red, green,

and blue components in the RGB color space, respectively. Other saturation measures (e.g., the saturation

definition in the HSV space and Lübbe’s definition in the CIELAB space [20]) produce similar results

in our fusion scheme.

As in the case of creating the contrast pyramid, we can construct a saturation pyramid for each source

image by first building a Gaussian pyramid and then calculating the saturation components at every

level. To be consistent with the contrast pyramid, this saturation pyramid also has Nc levels. In practice,

we observe that saturation calculation performed only at the highest pyramid level without information

passing between levels is sufficient to produce satisfactory fusion results with no noticeable difference.

This is because: 1) Gaussian smoothing has little influence on the objects/regions’ color information

when the filter’s size and variance parameters are small (we use the same Gaussian filter parameters as

for local contrast, i.e., size 5 × 5 and variance 1); 2) Gaussian smoothing mainly affects object/region

boundaries, where relatively large color and luminance changes occur after filtering, and these changes

are captured by the perceived local contrast measure.

D. Perceptual Impact of the Proposed Quality Measures

In order to illustrate the quality contribution of the proposed perceived local contrast and color saturation

measures, we incorporate these two measures in our previously published GRW model [6]. The results

on one scene are presented in Figure 3. Instead of employing local variations in a non-linear function

to indicate contrasts [6], we believe modeling the probability of the human visual system to perceive a

given contrast will generate better perceptual quality, because this new modeling scheme offers a more

accurate estimation of the amount of visual stimuli delivered from each image region, which leads to

better detail preservation, as shown in the insets. Together with the color saturation measure, the fused

image can exhibit more vivid colors (e.g., for the sky and the street lamp).

E. MAP-HMGCRF Model

In order to effectively integrate the proposed perceptual measures, we introduce a new Multivariate

Gaussian Conditional Random Field (MGCRF) model for lattice graphs (e.g., a lattice of pixels), in

which pixel contributions/fusion weights are evaluated as the MAP estimation. To improve computational

efficiency and memory usage, we perform the computation in a hierarchical version of the MGCRF.
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With local variation measure With perceived local contrast measure With both perceptual measures

Fig. 3. Incorporation of the proposed quality measures in MEF using the GRW model as an example. With the perceived

contrast measure, more local details are preserved, as shown in the insets. With the saturation measure, the fused image exhibits

more vivid colors, e.g., for the sky and the street lamp. (Source sequence courtesy of HDRsoft.com.)

TABLE I

COMPARISON BETWEEN SOLVING AN HMGCRF AND DIRECTLY SOLVING AN MGCRF

Input Size
Time (sec) Memory (MB)

RMSE (%)
HMGCRF MGCRF HMGCRF MGCRF

House 752× 500× 4 1.176 2.998 43 245 1.297

Chateau 1500× 644× 5 3.995 8.418 152 955 1.108

Belgium House 1025× 769× 9 5.362 7.449 148 773 0.800

Lamp 1600× 1200× 15 23.08 130.7 757 2386 0.904

1) MGCRF: Before introducing the hierarchical version, we first introduce a single-level model, the

multivariate Gaussian conditional random field, combining the multivariate Gaussian Markov random

field [21] and the Gaussian conditional random field [22]. Let x = (xT
1 , . . . ,x

T
N )T denote a K-dimensional

(K-D) potential field, where each xi = (xi,1, . . . , xi,K)T is a random vector that denotes a K-D potential,

and let D denote the observed data. Let xi’s be arranged in a graph G = (V, E), where the i-th node

in V represents xi and each edge eij ∈ E represents the presence of interaction between its incident

nodes xi and xj . Then, (x,D) is called an MGCRF with respect to G, if x given D satisfies the Markov

property (with positivity implicitly assumed). Let b = (bT
1 , . . . ,b

T
K)T define a K-D boundary for the

potentials. Let us denote the maximum and minimum allowable potentials in the k-th dimension as

Umax,k and Umin,k, respectively. Then, bk = (Umin,1, . . . , Umax,k, . . . , Umin,K)T . We assume that x is

piecewise smooth and that the difference between any two neighboring nodes follows a multivariate

Gaussian distribution with zero mean and precision matrix Sij : ∆x
ij , xi − xj ∼ N(0,Sij

−1). We also

assume that the difference between a variable xi and a boundary potential bk follows a multivariate

Gaussian distribution with zero mean and precision matrix Tik: ∆b
ik , xi − bk ∼ N(0,Tik

−1). Then,
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the posterior density p(x|b,D) follows a multivariate Gaussian distribution:

p(x|b,D) ∝ exp(−1

2
(

K∑
k=1

N∑
i=1

∆b
ik

T
Tik∆b

ik +

1

2

∑
eij∈E

∆x
ij
TSij∆

x
ij))

∝ exp(−1

2
xTPx− xTQb).

(4)

Here, P is an NK × NK matrix with the (i, j)-th K × K element defined as: Pij =
∑K

k=1Tik +∑
xm∈Ni

Sim, if i = j, where Ni denotes the neighborhood around xi; Pij = −Sij , if eij ∈ E ; Pij = 0,

otherwise. Q is an NK ×KK matrix with the (i, k)-th K ×K element defined as Qik = −Tik. Then,

the MAP estimate f∗ of the posterior density p(x|b,D) is:

f∗ = arg max
f

exp(−1

2
fTPf − fTQb)

= arg min
f

1

2
fTPf + fTQb.

(5)

This minimization problem is equivalent to solving the linear system Pf∗ = −Qb.

2) MGCRF for MEF: We consider that the fused image is derived as a pixel-wise weighted composition

of the source images:

p̄i = ui
Tpi = (ui,1, . . . , ui,K)(pi,1, . . . , pi,K)T , (6)

where p̄i and pi,k denote the i-th pixels in the fused image and the k-th source image, respectively; ui,k is

a fusion weight that measures the contribution from pixel pi,k; and ui and pi are a K-D weight vector and

a K-D pixel vector, respectively. If p̄i’s obtained in Equation (6) exceed the dynamic range of the target

device, they are truncated. If we model ui’s as the K-D potential field x on a lattice graph and pi’s the

observed data D, then estimating the fusion weights is equivalent to estimating the MAP configuration of

an MGCRF. To fully specify the MGCRF, we also need to define the precision matrices and the potential

boundary. We assume that the precision matrices Tik and Sij are identity matrices subject to individual

scaling factors, i.e., Tik = γ1YikI,Sij = γ2WijI. Here, I represents a K ×K identity matrix; γ1 and γ2

are data-independent scaling factors; and Yik and Wij are data-dependent scaling factors defined as:

Yik = Ψ(ĈNc−1
i,k ) · SNc−1

i,k , Wij =

K∏
k=1

exp(−
‖pi,k − pj,k‖

σ
) (7)
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(a)

(b)

Fig. 4. Fusion results of QBF-1 and QBF-2 on the six standard test scenes. The scenes are: Memorial Church (left most),

House (top left), Chateau (top right), Lamp (bottom left), Belgium House (bottom right), and National Cathedral (right most).

(a) Results of QBF-1; (b) Results of QBF-2. (Source sequences courtesy of Paul Debevec, Tom Mertens, HDRsoft.com, Martin

Čadı́k, Dani Lischinski and Max Lyons, respectively.)

where ‖ · ‖ denotes Euclidean distance; and σ is a free parameter. For the potential boundary, we assume

that the maximum allowable potentials in each dimension are equal and so do the minimum allowable

potentials, i.e., Umax,k = α1, Umin,k = α2,∀k. Setting α2 = 0 and with the identity precision matrix

assumption, the MAP-MGCRF model degenerates to the GRW model in terms of steady-state probability

calculation, but here we do not restrict the range of the boundary values.

3) HMGCRF: In order to efficiently estimate the MAP configuration on a lattice graph, we construct

an Nh-level hierarchical MGCRF and perform the calculation in a coarse-to-fine fashion. A coarser-level

lattice graph is obtained by downsampling the finer-level graph by a factor of 2 in each dimension. A

precision matrix Tsk between variable/node xs and boundary vector bk at a coarser-level MGCRF is

obtained as a weighted average of the precision matrices of variables in the second-order neighborhood of

xs’s projection at the finer-level MGCRF. A precision matrix Sst between two adjacent variables xs and
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xt at a coarser-level MGCRF is obtained as the precision matrix with the minimum determinant among

those defined in the common neighborhood of the projections of xs and xt at the finer-level MGCRF. At

the coarsest level, the MAP estimate is obtained using a direct linear system solver, and then the solution

is interpolated downwards along the hierarchy to the finest level.

We evaluated the performance of this HMGCRF with Nh = 5 on four multi-exposure sequences of

increasing size. Compared with directly solving an MGCRF, solving an HMGCRF requires less time and

memory but with good solution accuracy, as shown in Table I. With all the other settings the same, the

hierarchical version took 44.081% of the time and 21.085% of the memory needed by directly solving

an MGCRF and produced an average root mean squared error of only 1.027%.

IV. EXPERIMENTAL RESULTS

In this section, we summarize the evaluation results. Please refer to the supplementary material for more

details and high-resolution images. Our method has eight free parameters, i.e., θ,Nc, Nh, σ, γ1, γ2, α1, α2.

We take θ = 0.3, Nc = 2, γ1 = 1. Let a source sequence contain K M ×N images. Then, we compute

σ = 0.1K, γ = 0.2K
√
MN/κ, Nh = dlog2(min(M,N)/κ)e, where κ = 32 is the maximum number

of nodes allowed along the shorter dimension of the coarsest-level lattice. Depending on the size of the

source sequence, the value of Nh ranged between 4 and 6 in our experiments. We tested two sets of α1

and α2. In the first set, α1 = 1, α2 = 0, and we denote this algorithm as QBF-1. In the second set, we

compute α1 = 0.6 + exp(−L̄), α2 = 0.02 exp(−L̄), where L̄ is the average luminance of D, and we

denote this algorithm as QBF-2. These parameter settings were used in all experiments.

Six standard test sequences were used. The fusion results of the proposed QBF-1 and QBF-2 were

compared with two other MEF methods, i.e., Probabilistic Fusion (PF) [6] and Exposure Fusion (EF) [5],

which have previously demonstrated better performance than many other methods. In addition, two TM

methods were also considered: the Photographic Tone Reproduction (PTR) local operator [8] and the

iCAM06 operator [9], which have demonstrated good performance in various evaluations. The default

parameter settings in PF, EF, and iCAM06 were used. The parameters in PTR were estimated by the

method in [23]. The results by EF, PTR, and iCAM06, were generated by the programs provided by their

respective authors. The HDR images for PTR and iCAM06 were generated using HDR reconstruction [7].

Both the objective and subjective evaluations were performed in a reference-free manner, where no ideal

fused images were available to serve as references.
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MC: Memorial Church; NC: National Cathedral; H: House; C: Chateau; L: Lamp; BH: Belgium House

Fig. 5. Objective evaluation using QAB/F . All of the compared MEF methods successfully transferred most of the edge

information, and they have very close performance according to QAB/F . On the average, QBF-2 has slightly better performance

than the others.

A. Objective Evaluation

1) Evaluation Using QAB/F : Two objective evaluation metrics were employed to assess the fusion

quality. The first one is the QAB/F metric [24], which is widely used in the image fusion literature

to measure correctly transferred edge information in the luminance channel from source images to a

fused image. This metric gives a performance score between [0, 1], where a higher score indicates better

performance. Traditional fusion quality metrics, including QAB/F , were not designed for cases with more

than two source images in MEF. Nevertheless, QAB/F has been shown to be one of the most robust and

consistent metrics [25]. Most evaluation metrics that are designed for the case of two source images,

including the other two metrics recommended in [25] (i.e., Cvejic’s metric [26] and Yang’s metric [27]),

largely depend on the calculation and manipulation of covariance (or similar statistics) between the two

source images and/or between the two source images and the fused image. Therefore, it is relatively

difficult to extend such metrics to cases with multiple source images. The advantage of QAB/F is that

it does not rely on calculating statistical score between two source images, and thus it can be directly

extended to processes involving multiple source images, such as MEF. This metric has also been proven

to correspond best with subjective tests among several other popular metrics [28]. Therefore, we adapted

QAB/F in our evaluation. To the best of our knowledge, our evaluation is the first attempt of extending

a traditional fusion quality metric to MEF.

The fusion results of QBF-1 and QBF-2 on the six test scenes, along with objective evaluation results

using QAB/F , are shown in Figure 5. Although PTR and iCAM06 are not MEF methods, they are

included in this evaluation for reference purposes only. All of the compared MEF methods successfully

transferred most of the edge information, and they have very close performance according to QAB/F .
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Source sequence

QBF-1 QBF-2

PF EF

PTR iCAM06

Fig. 6. Comparison of QBF-1 and QBF-2 with PF, EF, PTR, and iCAM06 on the Lamp sequence using DRIVDP. The two

source images give good exposures for the bulb and the books, respectively. In a distortion map, green, blue, red, and gray pixels

indicate contrast loss, amplification, reversal, and no distortion, respectively. QBF-1 and QBF-2 are more effective in preserving

local details and color schemes than the others. For the bulb, QBF-2 shows the least distortion, followed by QBF-1, PTR, PF,

EF, and iCAM06. For the books, QBF-2 shows the least distortion, followed by EF, PF, QBF-1, iCAM06, and PTR.

On the average, QBF-2 has slightly better performance than the others.

2) Evaluation Using DRIVDP: To strengthen the evaluation capability of QAB/F , we incorporate

the Dynamic Range Independent Visible Difference Predictor (DRIVDP) [29] to assess per-pixel fusion

quality. DRIVDP evaluates visual local contrast distortions (i.e., loss of visible contrast, amplification of

invisible contrast, and reversal of visible contrast) between images under a specific viewing condition and

is widely used in the TM literature. Here, we use it to assess the visual distortions between a test image

and each source image. We assume that the images were viewed on a typical LCD with a maximum

luminance equivalent to 100cd/m2, a gamma value of 2.2, and a visual resolution of 30 pixels per degree

at a viewing distance of 0.5 meter and that the peak contrast sensitivity of the viewer is 0.25%.

We chose two images from each of the six source sequences for this evaluation. The evaluation result

on one sequence is given in Figure 6. The two source images with good exposures respectively for the
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Fig. 7. Average ranking scores of different algorithms in the subjective evaluation. The global contrast criterion measures

the global luminance variations. The details and the colors criteria measure the local details and colors reproduced and/or

enhanced from the source images, respectively. The overall appearance criterion measures the overall impression of a fused

or tone-mapped image. Our QBF-2 has the best performance under all four criteria for 5 out of 6 scenes, and shows similar

performance to our QBF-1 on the other scene. QBF-1 and EF have similar performance on the average though QBF-1 gives

better detail reproduction, followed by PF, iCAM06, and PTR.

bulb and the books are given in Figure 6(a). The distortion maps for each method are given in Figure 6(b)-

(g), along with the fused images. In a distortion map, green, blue, red, and gray pixels indicate contrast

loss, amplification, reversal, and no distortion, respectively. QBF-1 and QBF-2 are more effective in

preserving local details and color schemes than the other methods. QBF-2 performs best in preventing

contrast distortions for this sequence. Please note that contrast amplification is normally considered as

one of the objectives in image fusion.

B. Subjective Evaluation

We also conducted a subjective evaluation, where thirteen subjects (8 males and 5 females) aged

between 25 and 35 participated. All of the subjects had normal or corrected-to-normal vision and were

non-experts in the field of MEF or TM. The test was performed under normal lighting conditions.

For each scene, the results of different methods were anonymized and placed side by side in different

orders, along with the source sequence. No other reference image, either manually or automatically
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(a) (b)

Fig. 8. The results for the Lamp scene could be made more photo-realistic by increasing the weights for those source images

with higher average luminance values. (a) QBF-1 with increased weights; (b) QBF-2 with increased weights.

fused or tone-mapped, was provided to guide/influence a subject’s judgement. Subjects were asked to

rank the results on a scale of 5 (best) to 0 (worst) in four categories: global contrast, details, colors,

and overall appearance. These four criteria were also considered in [30]. The global contrast criterion

measures the global luminance variations. The details and the colors criteria measure the local details

and colors reproduced and/or enhanced from the source images, respectively. The overall appearance

criterion measures the overall impression of a fused or tone-mapped image.

The average ranking scores of different algorithms under each criterion are reported in Figure 7. QBF-2

performs consistently well compared to the other methods. It has the best performance under all criteria on

5 out of 6 scenes, and shows similar performance to QBF-1 on the National Cathedral sequence. QBF-1

and EF have similar performance on the average though QBF-1 offers clearly better detail reproduction,

followed by PF, iCAM06, and PTR. The evaluation results demonstrate that our proposed fusion method

is capable of producing high-quality fused images with quality comparable, or even better quality in

many cases, to tone-mapped HDR images and images by other fusion methods.

Even though photo-realistic appearance may not be always achieved due to detail maximization (e.g.,

the appearance of shadows in the Lamp scene but with the bulb not sufficiently illuminated), for the

criteria considered under the subjective evaluation, it does not really bring much negative experience to

the audience. Since the perceptual quality standard is set to satisfy the average (majority) audience, the

best strategy is to let an application to choose the desired parameter value. If desired by an application, a

simple remedy for the Lamp scene could be to increase the weights for those source images with higher

average luminance values, as shown in Figure 8.

December 6, 2012 DRAFT



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. X, XXX 2012 15

TABLE II

COMPUTATIONAL SPEED (UNIT: SECOND)

Input Size QBF PF EF

House 752× 500× 4 1.504 0.539 1.706

Chateau 1500× 644× 5 4.837 1.665 5.378

Memorial Church 512× 768× 16 5.836 2.047 6.795

Belgium House 1025× 769× 9 6.838 2.256 7.639

National Cathedral 1536× 2048× 2 7.589 3.522 7.887

Lamp 1600× 1200× 15 28.373 7.621 30.325

C. Computational Speed

The computational speed of our QBF is proportional to the size of the source sequence. Its execution

times on the six test sequences are compared with EF and PF in Table II, all of which are Matlab

implementations. Times were recorded on a 2.53-GHz dual-core laptop with 4-GB memory. In the table,

times for reading and writing images are excluded. QBF is a little faster than EF but slower than PF.

Nevertheless, QBF produces much better fusion quality than PF as shown in the objective and subjective

evaluations.

D. Discussion

Aside from QAB/F , we also investigated the applicability of two other traditional fusion quality metrics

(Cvejic’s metric and Yang’s metric) in MEF. These two metrics require two source images, and produce

a single global quality score for a fused image. Therefore, we first applied them to the National Cathedral

sequence, which contains exactly two source images. Since such metrics estimate local structural similarity

in the luminance channel between source images and the fused image, the details criterion in the subjective

study provides some useful information on evaluating their performance. Their quality scores for the six

compared algorithms are plotted against the average ranking scores under the details criterion of the

subjective evaluation (normalized to [0, 1]) and the QAB/F scores in Figure 9. From this plot, we can see

that QAB/F provides relatively better correspondence with the subjective study. We then applied Cvejic’s

metric, Yang’s metric, and QAB/F metric to the other five subsequences used in the DRIVDP-based

evaluation. QAB/F metric produced better correspondence with the details criterion in the subjective

evaluation than the other two metrics.
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Fig. 9. Comparison of the performance of three fusion quality metrics (QAB/F metric, Cvejic’s metric, and Yang’s metric)

on the National Cathedral sequence. From this plot, we can see that QAB/F provides relatively better correspondence with the

subjective study.

V. CONCLUSION

In this paper, we proposed a novel fusion algorithm based on perceptual quality measures, i.e., perceived

local contrast and color saturation. To the best of our knowledge, this is the first time that the modeling

of the probability for human eyes to detect local contrast is introduced to multi-exposure fusion, which

helps us achieve maximum local detail preservation. A hierarchical multivariate Gaussian conditional

random field model was proposed to effectively integrate the perceptual quality measures. Experiments

demonstrated better performance of our algorithm compared to other methods. In future work, we will

analyze the applicability of other perceptual quality measures in multi-exposure fusion.
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[28] V. Petrović, “Subjective tests for image fusion evaluation and objective metric validation,” Inf. Fusion, vol. 8, no. 2, pp.

208–216, 2007.

[29] T. O. Aydin, R. Mantiuk, K. Myszkowski, and H.-P. Seidel, “Dynamic range independent image quality assessment,” in

Proc. ACM SIGGRAPH, no. 69, 2008, pp. 1–10.

[30] M. Čadı́k, M. Wimmer, L. Neumann, and A. Artusi, “Evaluation of HDR tone mapping methods using essential perceptual

attributes,” Comput. Graph., vol. 32, no. 3, pp. 330–349, 2008.

Rui Shen (S’07) received the B.Eng. degree in computer science and technology in 2005 from Beihang

University, Beijing, China, and the M.S. and Ph.D. degrees in 2007 and 2012, both in computing science,

from the University of Alberta, Edmonton, Canada.

He is currently with the Multimedia Research Centre, University of Alberta. His research interests and

experience span the areas of image processing, computer vision, machine learning, and computer graphics.

He is on the organizing committees of IEEE International Conference on Multimedia and Expo (ICME)

2011 and IEEE ICME 2013. He was the recipient of the iCORE ICT Graduate Student Scholarship and the Izaak Walton Killam

Memorial Scholarship.

Irene Cheng (M’02–SM’09) is the Scientific Director of the iCORE Multimedia Research Centre and an

Adjunct Faculty in both Faculty of Medicine & Dentistry and Faculty of Science, University of Alberta,

Canada. Her research interests, among others, include incorporating human perception, incorporating the

concept of Just-Noticeable-Difference (JND) following psychophysical methodology, to improve multi-

media, graphics and computer vision techniques. She completed her Ph.D. at the University of Alberta

and conducted postdoctoral research at the University of Pennsylvania. Before joining academia, she was

a regional Information Technology executive in Lloyds Bank International, Asia. She received an Alumni Recognition Award

in 2008 from the University of Alberta for her R&D contributions. She has received, or been offered, many scholarships and

fellowships from NSERC, iCORE and others. Dr. Cheng is the Chair of the IEEE Northern Canada Section, EMBS Chapter

(2009-2011), Board Member of the IEEE System, Man and Cybernetics (SMC) Society, Human Perception in Vision, Graphics

and Multimedia TC, and the Chair of the IEEE Communication Society, MMTC Interest Group on 3D rendering, processing

and communications (2010-2012). She was the lead General Chair in IEEE ICME (July) 2011 and is a visiting professor funded

at Institut National des Sciences Appliquees (INSA) de Lyon, France 2011. She has over 100 publications including two books.

December 6, 2012 DRAFT



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. X, XXX 2012 19

Anup Basu (M’90–SM’02) received the Ph.D. degree in computer science from the University of Mary-

land, College Park.

He was a Visiting Professor at the University of California, Riverside, a Guest Professor at the Technical

University of Austria, Graz, and the Director at the Hewlett-Packard Imaging Systems Instructional

Laboratory, University of Alberta, Edmonton, Canada, where, since 1999, he has been a Professor at

the Department of Computing Science, and is currently an iCORE-NSERC Industry Research Chair. He

originated the use of foveation for image, video, stereo, and graphics communication in the early 1990s, an approach that

is now widely used in industrial standards. He also developed the first robust (correspondence free) 3-D motion estimation

algorithm, using multiple cameras, a robust (and the first correspondence free) active camera calibration method, a single

camera panoramic stereo, and several new approaches merging foveation and stereo with application to 3-D TV visualization

and better depth estimation. His current research interests include 3-D/4-D image processing and visualization especially for

medical applications, multimedia in education and games, and wireless 3-D multimedia transmission.

December 6, 2012 DRAFT


