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Abstract—We propose a new approach, that we call “Fluid 

Vector Flow” (FVF) active contour model to address problems of 

insufficient capture range and poor convergence for concavities. 

With the ability to capture a large range and extract concave 

shapes, FVF demonstrates improvements over techniques like 

GVF, BVF and MAC on three sets of experiment - synthetic 

images, pediatric head MRI images, and brain tumor MRI images 

from the Internet Brain Segmentation Repository. 

 
Index Terms—Active contour models, vector flow, snakes, brain 

tumor, segmentation 

 

I. INTRODUCTION 

ctive contour models or snakes [1-5] have been adopted as 

effective tools for segmentation [6-7] and object tracking 

[8-9]. Active contour models discussed in the literature can be 

classified into two categories: parametric [1-3] and level set 

[4-5]. 

Parametric active contour models are represented explicitly 

as polynomials or splines. Given an initial contour, the 

evolution of a parametric active contour model is driven by 

external forces while the shape of the contour is maintained by 

the internal forces [1]. Due to the availability of efficient 

numeric methods [1-2], parametric active contour models are 

often faster than level set ones [4-5]. Given a single initial 

contour as the input, parametric active contour models are able 

to extract a single object. Despite the above strength, parametric 

snakes have two weaknesses. First, the capture range is limited. 

Capture range is the region that the external forces are strong 

enough to drive contour evolution. The external forces of the 

traditional [1] and Gradient Vector Flow (GVF) [2] parametric 

snakes are represented as small arrows in Fig. 1 (a) and (b). The 

length of an arrow represents the magnitude of an external force 

at that location. In Fig. 1, the capture range is the region with 

dense arrows (external forces) that are strong enough to drive 

the contour evolution. We can see that the capture range of the 
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traditional snake is a very limited region around the object 

boundary. GVF diffuses the external forces from the object 

boundary to its surroundings to obtain a larger capture range. 

However, the capture range of GVF is still not the entire image. 

If the initialization is out of the capture range, the active contour 

will not evolve (Fig. 1 (c)). Second, parametric snakes, e.g. 

GVF and Boundary Vector Flow (BVF) [3], are unable to 

extract acute concave shapes (Fig. 2 (b) and (c)). We observe 

that other parametric active contour models (traditional, GVF 

and BVF) are unable to extract acute concavities because their 

external force fields are static. There could be saddle points or 

stationary points [4] where the composition of external forces is 

zero (Fig. 2 (d) and (e)) in static force fields. Therefore, the 

contours will get stuck at those locations and equilibrium will be 

achieved too early [4].  

Level set active contour models [4-5] are implicitly 

represented in the zero level set. The evolution of a level set 

active contour model is achieved by deforming the level set 

function. The advantages of level set include the abilities to 

capture multiple objects and complex geometries [4]. However, 

they are usually slower than parametric methods because the 

deformation of a higher dimensional function is required [4]. 

Morse et al. [12] proposed to implicitly represent snakes using 

radial basis functions by placing them at some landmarks. This 

can avoid manipulating a higher dimensional function but it 

requires insertion and deletion of landmarks dynamically. 

Moreover, “false” objects can be extracted in the presence of 

noise which may cause multiple zero level sets (Fig. 3).  

For many applications [10], it is necessary to extract a single 

object. Since the application in this paper is to extract single 

objects, i.e., the brain tumor, in brain MRI images, we focus on 

parametric snakes taking advantage of its uniqueness of 

contour. To address the issues of capture range and acute 

concave shape, we propose a parametric active contour model 

using a new concept, that we call “Fluid Vector Flow” (FVF), 

which simulates fluid flowing along object boundary and 

generates external force fields dynamically to drive the contour 

evolution. FVF has the largest capture range, i.e., the entire 

image. FVF is also able to extract acute concave shapes due to 

its non-static external force fields. In this model, the external 

force field changes dynamically with the contour evolution. 

Thus, the FVF contour does not get stuck and acute concavities 

can be extracted.  

The limitations with previous models that FVF will overcome 

are as follows: 
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 Limited capture range 

 Inability to handle acute concave shapes 

Extraction of brain tumor in brain MRI images becomes much 

easier by taking advantage of the proposed FVF method. 

The rest of this paper is organized as follows. In Section II, 

the background of parametric and level set snakes is briefly 

described. Section III introduces the Fluid Vector Flow method. 

Some experimental results and comparisons are presented in 

Section IV, before the work is concluded in Section V.  

II. BACKGROUND OF PARAMETRIC AND LEVEL SET ACTIVE 

CONTOUR MODELS 

A. Traditional snake 

A traditional snake [1] is a parametric active contour: 

]1,0[ )),(),(()(  ssysxsc  (1) 

Given an initial contour, it evolves within an image ),( yxI  

to minimize the energy function: 
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where iE  is the internal (spline) energy and eE  is the external 

energy. 

The internal energy is given by: 
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In many implementations, the coefficient of the first-order 

term in (3) is a constant, α(s) = α; and β(s) is set to zero to allow 

the snake to be second-order discontinuous and contain corners. 

Many parametric snakes share the same internal energy. They 

differ mostly in the external energy. A snake should evolve to 

minimize the energy functional snakeE . This problem can be 

formulated with the Euler-Lagrange equation. In calculus of 

variations, the Euler-Lagrange equation of: 
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Therefore, the Euler-Lagrange equation of (2) is represented by: 

0)('''')(''  eEscsc   (6) 

To find a numeric solution of (6), the snake is treated as a 

function of time t as well as s: 

0),(''''),(''  eEtsctsc   (7) 

When the contour stabilizes, the time term vanishes and a 

solution is obtained. 

B. GVF snake 

GVF snake [2] has a larger capture range than the traditional 

snake. It diffuses the edge information from the object contour 

to its neighborhood. The external force of GVF snake differs 

from the traditional snake in that it cannot be written as the 

negative gradient of a potential function. In addition to this, the 

GVF snake is formulated directly from a force balance 

condition rather than a variational formulation. The gradient 

vector flow is defined as the vector field:  
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that minimizes the energy function: 
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where k is a blending parameter, ux, uy, vx, and vy are the 

derivatives of the vector field, and  f is the gradient of the 

edge map. The GVF snake is computed by solving the following 

Euler-Lagrange equations: 
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C. BVF snake 

BVF [3] extends the capture range further to the entire image 

based on interpolation. It applies a threshold to generate a 

binary boundary map of the input image. Then, four potential 

functions x , y , xy  and yx  are computed using 

line-by-line interpolations in the horizontal, vertical and two 

diagonal directions. The boundary vector flows are defined 

based on the gradients of the following potential functions: 
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The external force is defined as:  

),(),( yxyxEe   (14) 

Similar to GVF, BVF is unable to extract acute concavities.  
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D. Magnetostatic Active Contour (MAC) Model 

MAC snake [4] is a level set active contour model. The 

external force of MAC is based on magnetostatics and 

hypothesized magnetic interactions between the active contours 

and object boundaries. It is able to capture complex geometries 

and multiple objects with a single initial contour. However, as 

stated in the introduction, it is slower than parametric methods 

and may detect multiple false objects in the presence of noise, 

which may cause multiple zero level sets to arise. MAC snake 

represents the active contour with an implicit model in which 

the contour consists of all points in: 

  RRxxc  2:   where,0)(|   (15) 

MAC relates the motion of that contour to a PDE (Partial 

Differential Equation) on the contour: 

)(tv
t
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where )(tv  describes the velocity of the contour movement. 

For image segmentation: 
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where   is a real constant, )(xs  is the stopping function, and 

)(xF  is the magnetostatic force. 

III. PROPOSED FLUID VECTOR FLOW (FVF) METHOD 

Given an input image I(x, y) and a closed parametric contour 

c(s) given in (1), the objective is to evolve the contour to extract 

a target object O(x, y), i.e. the brain tumor. This method is 

executed in three stages: binary boundary map generation, 

vector flow initialization and fluid vector flow computation. 

Fig. 4 shows the flowchart of this method, which starts with 

initializing the contour, then the binary boundary map is 

generated and vector flow is initiated, and fluid vector flow is 

computed and dynamically updated until the object contour is 

extracted. 

In the first stage, we apply a Gaussian smoothing filter to the 

input image and apply a gradient operator to find edges in the 

image. A threshold (free parameter) T[0, 1] is then used to 

generate the binary boundary map. At the second stage, the 

contour can be initialized to initialize the external force field. 

The initial contour can be inside, outside, or overlapping the 

target object. The program automatically detects the 

initialization and generates the external force field accordingly. 

The computation of the internal energy follows (3). The initial 

forces will push the active contour to the neighborhood of the 

target object. At the last stage, a control point is automatically 

selected from the object boundary and generates new external 

force field to evolve the active contour. This point can flow 

freely along the object boundary like a drop of fluid, 

dynamically update the external force field to avoid the problem 

of saddle points and stationary points [4], and therefore further 

evolve the active contour until convergence is achieved.  

A. Binary Boundary Map Generation 

The boundary map is defined as: 

)),(),((),( yxIyxGyxMB    (18) 

where Gσ(x, y) is a Gaussian smoothing filter with standard 

deviation σ,   is the convolution operator and  is the gradient 

operator. We compute the normalized boundary map: 
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Similar to BVF [3], we apply a threshold T [0, 1] to 

generate the binary boundary map: 
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The choice of a suitable threshold value varies depending on 

the intensity distribution and contrast associated with the set of 

images being analyzed. For the brain MRI images tested in our 

implementation, a default value of 0.1 works well. Observe that 

the blurred contour of the brain ventricle (low intensity region) 

is extracted successfully in the boundary map using T = 0.1 (Fig. 

5). We tested with a higher T value and then decreased T 

progressively but object boundary continuity was not obtained 

until 0.1 was reached. The extracted boundary provides an 

envelope to ensure that the final convergence is not out of 

bound. The threshold of 0.1 is consistent with the threshold of 

0.13 commonly used by other snake models as suggested by 

Sum and Cheung in [3]. 

B. Vector Flow Initialization 

At this stage, the contour should be initialized to initialize the 

external force field. The initial parametric contour c(s) can be 

initialized either inside, outside, or overlapping (Fig. 6 (a)-(c)) 

the target object O(x, y). The FVF method is insensitive to the 

initialization by taking advantage of the binary boundary map 

generated at the previous stage. Suppose C is the initial contour, 

cR is the region enclosed by contour C, and bR  is the region 

enclosed by the binary boundary map (Fig. 7), we define 

cbbc RRR : . The following criteria determine the spatial 

relationships between the initial contour and the binary 

boundary map: 

(a) C is inside the binary boundary map when cbc RR  ; 

(b) C is outside the binary boundary map when  bcRC ; 

(c) Otherwise, C is overlapping the binary boundary map.  

When overlap is detected, contour C will be automatically 
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enlarged guided by the boundary map to enclose bR . 

Therefore, “overlapping” is eventually handled as “outside” 

after enlargement (Fig. 6 (d)). During enlargement, neighboring 

objects in the binary boundary map that do not contain bcR  

remain outside the contour and only the one connected 

component (the target) in the binary boundary map that contains 

bcR  is included in cR . A connected component is a region of 

8-connected object pixels (ones) in the binary boundary map. 

We use the discrete form of (1) to represent the contour C:  

   ]1,...,1,0[ ,,)(  Piyxic ii  (21) 

where P is the number of points on the contour.  

The center point of the bounded region is located at:   
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An external energy function is defined as: 
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where   is a normalization operator, 1  (controls the 

inward or outward direction, when the contour is “outside” or 

“inside”), )),((),( yxIff yx   , and:  
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where ]2,0[   . 

The external energy eE  has a gradient component and a 

directional component. The gradient force is computed in a 

manner similar to the traditional snake [1] and GVF snake [2]. 

The characteristic of FVF lies in the computation of the 

directional force, which is based on a polar transformation. 

When the contour is far away from the object, the directional 

force dominates and attracts the contour towards the object. 

When the contour is close to the object, the gradient force fits 

the contour to the object.  

The capture range of FVF extends to the whole image 

because the vector flow energy defined in (23) spreads around 

the entire image I(x, y). Even if the initial contour is far from the 

object, the snake can still evolve towards the object. In other 

words, the border of an image can be used as the initial contour 

when the initial contour is not given. This feature makes FVF 

more effective than either the traditional snake [1] or the GVF 

snake [2]. Although the capture range of BVF [3] can also 

extend to the entire image, the performance of FVF is more 

efficient because interpolation is avoided. Furthermore, the 

BVF interpolation is executed in only four directions, whereas 

FVF is direction invariant ( ]2,0[   ). Note that the capture 

range of MAC is also the entire image. Fig 10 (p) – (t) illustrates 

the capture ranges of GVF, BVF, MAC and FVF. Fig 10 (p) 

shows an object without a given initial contour. The image 

border is then used as the initial contour. GVF failed to extract 

the object since the initial contour (image border) is out of its 

capture range. BVF, MAC and FVF can extract the object since 

their capture ranges cover the entire image domain. 

Note that if concavities exist, convergence will not be 

achieved at the vector flow initialization step. Fig. 8 (b) shows 

the vector flow initialization. The circle is the initial contour and 

the blue (dark gray in B&W print) small arrows represent vector 

flows. Fig. 8 (c) shows that the evolution stops at the center of 

the image where the composition of external forces is zero. The 

contour will evolve to the red (middle grey in B&W print) line 

and is not able to extract the concave region. To extract the 

complete contour, the fluid vector flow computation step is 

performed. 

C. Fluid Vector Flow Computation 

In this step, a trace method is applied to the binary boundary 

to get a list of control points:  

]1,...,1,0[ )),,((),(  QqyxMyxB BBqq   (25) 

where   is a boundary trace operator and Q is the number of 

the control points.  

The Fluid Vector Flow energy function is defined by: 
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The pseudo code of Fluid Vector Flow computation and 

active contour evolution is as follows: 

0 Get a list of control points B with (25). B contains Q points. 

1 ind=0; 

2 While convergence is not achieved 

3  q=ind+δ; 

4  if q>=Q 

5   break; 

6  x=B[q].x; y=B[q].y; 

7  Generate new force field at (x, y) with (26); 

8  Evolve the active contour in the new force field; 

9 End while 

10 Output the result of contour evolution. 

In the pseudo code, ind (line 1) is the index of control point, q 

(line 3) is the new index of the control point, and (x, y) (line 6) is 

the new location of the control point.  

Our intention is to use the control points to generate the 

external force fields. First, a list of control points B is computed 

with (25). Then, in each iteration of the above while loop, one 

control point is sequentially selected in the list B. Imagine that 

the control point is a drop of fluid, this process looks like the 

fluid drop moving along the object boundary and generating 

vector flow (external force field) dynamically. This is the reason 

why we name the method Fluid Vector Flow. 

Using all the control points to generate force fields can be 
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time-consuming. In addition to that, adjacent control points may 

generate external force fields with little differences. Therefore, 

a parameter δ is used to manage the selection of the control 

point. δ can be imagined as the velocity of the movement of the 

fluid drop. The method selects 1 out of δ control points to 

achieve better time efficiency. For instance, in Fig. 8, we assign 

δ =20 to select one out of 20 control points. When δ=1, all 

points extracted by the trace operator are used one by one. 

Once the control point moves to its new location (i.e., a new 

control point is selected), it generates new external force field to 

avoid the problem incurred by saddle points and stationary 

points, and therefore is able to further evolve the contour until 

convergence is achieved.  

The energy fvfE   has a gradient term and a directional term. 

The directional force attracts the evolving contour towards the 

control points even for control points in a concave region. When 

the contour is close to the object, the gradient force fits the 

contour onto the object. Convergence is achieved when the 

contour stops evolving.  

In Fig. 8, the target object is given in (a), and (b) shows the 

initial contour and vector flow initialization. From (c) to (k), the 

fluid vector flows are shown as blue (dark grey in B&W print) 

arrows, and the evolving contour is illustrated in red (middle 

gray in B&W print). The control point involved in each 

convergence step is marked as a green (light gray in B&W print) 

dot. Note that the control points selected by the boundary trace 

operator are located along the binary boundary map.  

In Fig. 9, we show the results of applying our technique on a 

head MRI image to extract the low intensity brain ventricle 

region. 

IV. EXPERIMENTAL RESULTS 

We tested and compared FVF against GVF, BVF and MAC 

for three data sets: synthetic images, head MRI images, and 

IBSR brain tumor MRI images [13]. The head MRI images 

were provided by the Department of Pediatrics at the University 

of British Columbia. The IBSR brain tumor MRI images were 

provided by the Center for Morphometric Analysis at 

Massachusetts General Hospital, and are available at 

http://www.cma.mgh.harvard.edu/ibsr/. These T1-weighted 

images contain multiple scans of a patient with a tumor taken at 

roughly 6 month intervals over three and a half years. The 

dimension of the images is 256x256. The pixel resolutions on 

these images are 0.9375x0.9375 mm in-plane by 3.1 mm slice 

thickness. Segmentation ground-truth files are also available for 

quantitative analysis. 

We also set up parameters for those snake models to compare 

them as fairly as possible. For GVF, we keep the default settings 

unchanged. For BVF, we test the input images with 9 different 

values (0.1, 0.2, …, 0.9) of the threshold T and report the best 

result. For MAC snakes, in addition to these 9 threshold values, 

we also tested it with 2 much smaller values (0.01 and 0.05) 

according to the suggestion of the authors [4]. Moreover, since 

dual snake contours (Contour 0 and Contour 1) are implemented 

in MAC, we report the contour that has better result. For FVF 

snakes, we use the threshold value determined by BVF. 

For each test image, the initial contour was placed inside, 

outside and overlapping the target object to test the robustness 

and sensitivity of the methods to initializations. Since the 3
rd

 test 

set (IBSR brain tumor images) comes with noise, we did not 

artificially add noise to the data. 

A. Synthetic Images 

We first tested and compared FVF with GVF, BVF and MAC 

snakes for a set of synthetic images. Some results are shown in 

Fig. 10.  

The 1
st
 row (Fig. 10 (a)-(e)) shows an acute concave object 

with an initial contour at the outside, and the result of GVF, 

BVF, MAC (Contour 1) and FVF. We can see that both MAC 

and FVF can extract the boundary of the object. However, GVF 

and BVF failed to do so. This is because both GVF and BVF are 

incapable of extracting acute concave shapes.  

The 2
nd

 row (Fig. 10. (f)-(j)) shows an object with a small 

initial contour inside, and the results of GVF, BVF, MAC 

(Contour 0) and FVF. We can see that the GVF snake does not 

evolve at all because of the static equilibrium force field. BVF, 

MAC, and FVF can extract the boundary of this object. 

The 3
rd

 row (Fig. 10. (k)-(o)) shows an object with an 

overlapping initial contour, and the result of GVF, BVF, MAC 

(Contour 0 and Contour 1) and FVF. We can see that the GVF 

and BVF snakes did not extract the boundary of the object but 

instead evolved to a point. Each one of the dual contours of 

MAC snake superimposes on each other and outlines both the 

internal and external boundaries of the object. The FVF snake 

extracts the boundary of the object.  

The 4
th

 row (Fig. 10. (p)-(t)) shows an object without a given 

initial contour (the image border is then used as the initial 

contour), and the results of GVF, BVF, MAC (Contour 1) and 

FVF. GVF failed to extract the object since the initial contour 

(image border) is out of its capture range. BVF, MAC and FVF 

can extract the object since their capture ranges cover the entire 

image domain. 

B. Head MRI Images 

We then tested and compared FVF with GVF, BVF and MAC 

snakes for a set of head MRI images. Some results are shown in 

Fig. 11.  

The first row (Fig. 11 (a)-(e)) shows an image with an initial 

contour outside the high intensity region (intra-ventricular 

hemorrhage), and the result of GVF, BVF, MAC (Contour 1) 

and FVF. We can see that only BVF and FVF can extract the 

boundary of the object.  

The second row (Fig. 11. (f)-(j)) shows an image with a small 

initial contour inside the brain ventricle, and the result of GVF, 

BVF, MAC (Contour 1) and FVF. We can see that the GVF and 

BVF snakes evolved to lines on the right side of the brain 

ventricle but failed to extract the boundary of the ventricle. 

MAC and FVF can both extract the boundary of the brain 

ventricle. However, the result of FVF is smoother. 

The third row (Fig. 11. (k)-(o)) shows an image with an initial 

http://www.cma.mgh.harvard.edu/ibsr/
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contour overlapping the eye, and the result of GVF, BVF, MAC 

(Contour 1) and FVF. We can see that the GVF and BVF snakes 

degenerated to points on the top right and top left of the eye. 

MAC and FVF can both extract the eye and the results are 

similar. 

Two examples of visual evaluation comparing the manually 

defined contour and the FVF generated contour are shown in 

Fig. 12. Quantitative evaluations of GVF, BVF, MAC and FVF 

are reported in the next section. 

C. IBSR Brain Tumor MRI Images and Quantitative 

Analysis 

Brain tumor images (in which brain tumors are visible) from 

IBSR [13] are tested in our experiment. The Tanimoto Metric 

[11] is used for quantitative analysis.  

Tanimoto Metric is defined as: 

 10 , 



 TM

RR

RR
TM

GX

GX
, where XR  is the region 

enclosed by the contour generated by the test method, GR  is the 

region enclosed by the ground-truth contour, and   is set 

cardinality (number of elements). 0TM  would indicate two 

completely distinct contours; while 1TM  would indicate 

completely identical contours. Table I shows the test results. 

Table I has 5 columns. The 1
st
 column is the image ID (1 to 

10). The 2
nd

 column lists the name of the 4 methods. The 3
rd

 to 

5
th

 columns are the Tanimoto Metric when the initial contour is 

inside, outside and overlapping the target object. The best 

method for each image is bold. FVF outperforms GVF, BVF 

and MAC in general.  

It is important to note that the four methods apply different 

computational models to generate the force fields which are 

governed by the underlying image properties.  Force fields are 

unevenly distributed in an image. In other words, a method may 

perform well in one region but may not do well in another region 

of the same image. An example is illustrated in Fig. 13, which 

shows the results of GVF, BVF, MAC and FVF on test image #4 

when the initial contour (not shown) is inside (2
nd

 and 3
rd

 rows) 

and outside (4
th

 and 5
th

 rows) the brain tumor respectively. 

Observe that when the initial contour (not shown) is inside the 

tumor, the Tanimoto Metric (TM) value of MAC is the best 

among the four methods (0.876, see Table 1). However, when 

the initial contour (not shown) is outside the tumor, the TM 

value of MAC is the worst (0.080, see Table 1). Also note that a 

perfect TM value of 1.0 is difficult to achieve especially when 

the target object is small. For example, the TM value is only 

0.876 even though the method generated contour and the 

ground-truth are similar (see (b) and (i) in Fig. 13). This is 

because the brain tumors are small, composed of only 50 to 200 

pixels in the MRI images; a few pixels of deviation from the 

ground-truth can result in a less than perfect TM value. 

Table II shows the mean, median and standard deviation of 

the TM of GVF, BVF, MAC, and FVF. FVF has the largest 

mean and median with smallest standard deviation. Mixed 

effects model [14] with random data and test effects is used to 

statistically compare the differences between FVF and other 3 

methods. Random data effects are used because of the induced 

correlation due to the tests on the same data set, and random test 

effects because of the repeated tests  (i.e., inside, outside, and 

overlap) for each method on the same data sets. Table III shows 

the comparison between FVF and GVF, BVF, and MAC using 

mixed effects model. Since all the P-values are smaller than 

0.01, FVF is statistically better than the other models in this 

experiment. 

D. Implementation 

The MATLAB source codes of GVF and BVF are obtained 

from the authors of [2] and [3]. The executable java code of 

MAC is provided by the authors of [4]. FVF is implemented in 

MATLAB. In our implementation, the default value of T is 0.1. 

The program also provides the binary boundary maps generated 

by 8 other values (0.2, 0.3, …, 0.9) of T so that the software user 

can choose the best value to define the edges of the target object, 

if the default value does not work. FVF is implemented in 

MATLAB and not optimized for speed. In general, it takes FVF 

about 1 to 5 seconds to process a 256x256 image on a Pentium 4 

(3GHz CPU, 2GB RAM) desktop computer. 

V. CONCLUSION AND FUTURE WORK 

We proposed a new parametric Fluid Vector Flow (FVF) 

active contour model to address the issues of limited capture 

range and the inability to extract complex contours with acute 

concavities. Experiments on synthetic images and head MRI 

images show that FVF produces better results compared to 

GVF, BVF and MAC. Quantitative experiments on brain tumor 

images show that FVF has the largest mean (0.61) and median 

(0.60) with smallest standard deviation (0.05) using Tanimoto 

Metric. Mixed effects model with random data and test effects is 

used to statistically compare the differences between FVF and 

other three methods. Since all the P-values are smaller than 

0.01, FVF is statistically better than the other models in this 

experiment. In future work, we plan to extend FVF to analyze 

3D medical data.  
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                     (a)                           (b)                       (c) 

Fig. 1. The limited capture range of (a) a traditional parametric snake and (b) a 

GVF parametric snake. If the initialization (outer circle in (c)) is outside the 

capture range, convergence does not occur. 

 

 
         (a)           (b)             (c)             (d)           (e) 

Fig. 2. (a) An acute concave shape. (b) GVF and (c) BVF are not able to capture 

the acute concave shape.  A saddle point in GVF is shown in (d) and a 

stationary point in BVF is shown in (e). 

 

  
                                     (a)                             (b) 

Fig. 3. (a) A “U-shape” object in noisy environment (b) false objects (i.e., small 

enclosed contours) can be extracted by a level set snake. 

 

 
Fig. 4. The process of FVF. 

 

   
                   (a)                               (b)                                (c) 

Fig. 5. (a) A head MRI image, (b) its gradient map and (c) its extracted 

boundary map using a default threshold of 0.1. 
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           (a)                  (b)                  (c)                 (d) 

Fig. 6. The initial contour (circle) is (a) inside (b) outside and (c) overlapping 

the target object.(d) the initial contour is automatically enlarged to enclose the 

object so that “overlapping” can be handled as “outside.” 

 

   

               (a)                          (b)                              (c)  

Fig. 7. (a) Initial contour C is inside bR , (b) contour C is outside bR , and (c) 

contour C overlaps bR . FVF is able to evolve in each of these initialization 

cases. 

 

    

              (a)                         (b)                      (c)                (d) 

    

              (e)                         (f)                      (g)                (h) 

    

              (i)                         (j)                      (k)                (l) 

Fig. 8. An example of FVF contour evolution: (a) The target object and (b) the 

initial contour and vector flow initialization, (c)-(k) a sequence of fluid vector 

flow processes and (l) the convergence result. 

 

 

            (a)                  (b)               (c)               (d) 

Fig. 9. Illustration of FVF process: (a) the target object (brain ventricle) with 

initial contour (small circle in the ventricle) added, (b) the binary boundary 

map, (c) the final contour of FVF in the image, and (d) a zoomed-in view of the 

binary boundary map which restricts the final contour inside an envelop. 

 

  

         (a)          (b)                (c)                (d)           (e) 

 

         (f)          (g)                (h)                (i)           (j) 

 

         (k)          (l)              (m)            (n)           (o) 

  

         (p)          (q)                 (r)                (s)           (t) 

Fig. 10. (a) An acute concave object with an initial contour at the outside, and 

the results of: (b) GVF, (c) BVF, (d) MAC (e) FVF; (f) an object with a small 

initial contour at the inside, and the results of: (g) GVF, (h) BVF, (i) MAC (j) 

FVF; (k) an object with an overlapping initial contour, and the results of (l) 

GVF, (m) BVF, (n) MAC (o) FVF; (p) an object with the image border as the 

initial contour, and the results of (q) GVF, (r) BVF, (s) MAC (t) FVF. 

 

 

          (a)              (b)              (c)            (d)                 (e) 

 

          (f)              (g)             (h)            (i)                  (j) 

 

         (k)               (l)            (m)           (n)               (o) 

Fig. 11. (a) An image with an initial contour on the outside of the high intensity 

region (intra-ventricular hemorrhage), and the results (zoomed-in) of: (b) GVF, 

(c) BVF, (d) MAC (e) FVF; (f) an image with a small initial contour at the 

inside of the brain ventricle, and the results (zoomed-in) of: (g) GVF, (h) BVF, 

(i) MAC (j) FVF; (k) an image with an initial contour overlapping the eye, and 

the results (zoomed-in) of (l) GVF, (m) BVF, (n) MAC (o) FVF. 
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                         (a)                                                 (b) 

Fig. 12. A visual inspection of the FVF generated contour: The images in (a) 

and (b) show the FVF detected contour (blue) overlaid with the ground truth 

(red). 

 

  
                         (a)                                                   (b) 

    
           (c)                         (d)                         (e)                       (f) 

    
           (g)                         (h)                         (i)                       (j) 

    
           (k)                         (l)                         (m)                       (n) 

    
           (o)                         (p)                         (q)                       (r) 

Fig. 13. (a) Ground-truth and (b) the segmented region of ground-truth of 

Image #4 in Table 1, and the results of (c) GVF, (d) BVF, (e) MAC, (f) FVF, 

and the segmented regions of (g) GVF, (h) BVF, (i)  MAC, (j) FVF, when the 

initial contour (not shown) is inside the brain tumor; and the results of (k) GVF, 

(l) BVF, (m) MAC, (n) FVF, and the segmented regions of (o) GVF, (p) BVF, 

(q)  MAC, (r) FVF, when the initial contour (not shown) is inside the brain 

tumor. 

 

Table I. Quantitative analysis of GVF, BVF, MAC and FVF based on IBSR 

brain tumor MRI images. 

Image Method TM 

(inside) 

TM 

(outside) 

TM 

(overlap) 

#1 GVF 0.173 0.340 0.201 

BVF 0.004 0.350 0.430 

MAC 0.013 0.061 0.013 

FVF 0.515 0.519 0.521 

#2 GVF 0.005 0.217 0.005 

BVF 0.014 0.468 0.664 

MAC 0.015 0.048 0.022 

FVF 0.582 0.589 0.598 

#3 GVF 0.004 0.117 0.004 

BVF 0.004 0.572 0.007 

MAC 0.722 0.074 0.719 

FVF 0.709 0.716 0.710 

#4 GVF 0.410 0.418 0.414 

BVF 0.640 0.574 0.649 

MAC 0.876 0.080 0.842 

FVF 0.667 0.656 0.661 

#5 GVF 0.005 0.092 0.009 

BVF 0.585 0.478 0.576 

MAC 0.005 0.075 0.041 

FVF 0.653 0.653 0.658 

#6 GVF 0.005 0.189 0.010 

BVF 0.250 0.372 0.275 

MAC 0.791 0.056 0.060 

FVF 0.561 0.563 0.571 

#7 GVF 0.294 0.375 0.317 

BVF 0.540 0.520 0.531 

MAC 0.764 0.066 0.036 

FVF 0.565 0.571 0.588 

#8 GVF 0.415 0.370 0.398 

BVF 0.591 0.526 0.572 

MAC 0.012 0.072 0.056 

FVF 0.608 0.607 0.599 

#9 GVF 0.000 0.300 0.000 

BVF 0.361 0.000 0.631 

MAC 0.787 0.079 0.781 

FVF 0.599 0.597 0.598 

#10 GVF 0.004 0.106 0.011 

BVF 0.000 0.626 0.386 

MAC 0.813 0.162 0.041 

FVF 0.617 0.616 0.589 

 

Table II. Mean, median and standard deviation of the TM of GVF, BVF, MAC 

and FVF. 

Method Mean Median Std 

GVF 0.17 0.15 0.17 

BVF 0.41 0.50 0.23 

MAC 0.27 0.07 0.35 

FVF 0.61 0.60 0.05 

 

Table III. Comparison between FVF and GVF, BVF, and MAC using mixed 

effects model. 

Comparison Estimate Standard Error P-value 

FVF-GVF 0.4349 0.07084 <0.0001 

FVF-BVF 0.2020 0.07084 0.0072 

FVF-MAC 0.3358 0.07084 <0.0001 

 


