
FP-8

1

Abstract— Efficient on-line visualization of 3D textured models is
essential for a variety of applications including not only games
and e-commerce, but also heritage and medicine. To visualize 3D
objects online, it is necessary to quickly adapt both mesh and
texture to the available computational or network resources.
Earlier research showed that after reaching a minimum required
mesh density, high-resolution texture has more impact on human
perception than a denser mesh. Given limited bandwidth, an
important issue is how to extract features that best represent the
original object, and how to allocate resources between mesh and
texture data to achieve optimal perceptual quality. In this paper,
we propose a textured mesh (TexMesh) model, which applies
scale-space analysis (SSF) and perceptual evaluation to extract
3D features for textured mesh simplification and transmission.
Texture data is divided into fragments to facilitate quality and
bandwidth adaptation. Texture quality assignment is based on
feature point distribution. On-line transmission is based on
statistics gathered during preprocessing, which are stored in a
priority queue and lookup tables. Quality of Service (QoS)
requested by a client site can be met by applying an efficient
adaptive algorithm to ensure optimal use of the specified time and
available bandwidth, and at the same time preserving satisfactory
quality. Our TexMesh framework integrates feature extraction,
mesh simplification, texture reduction, bandwidth adaptation,
and perceptual evaluation into a multi-scale visualization
framework.

Index Terms— Bandwidth adaptation, feature extraction,
LOD, perceptual evaluation, scale-space analysis, texture
reduction.

I. INTRODUCTION
FFICIENT online visualization of 3D objects is essential
in multimedia applications. In the past, because of the

constraints on rendering hardware and scanning techniques,
only limited number of polygons was used to represent the
geometry of 3D objects; resulting in poor visual quality.
However, with advancements in rendering techniques and
scanning technology, 3D objects in the virtual world can now
be presented with denser meshes and high-resolution textures.
While the availability of an increased amount of 3D range data
brings promise to multimedia applications, it also imposes
challenges to researchers especially for on-line transmission.
Although network speed has been improved significantly in
recent years, it is not always fast enough to transmit data with
sufficiently low latency to satisfy the Human Visual System
(HVS). Another problem on the Internet is fluctuating
bandwidth, and bottleneck during periods of high traffic. To

solve these problems and provide reasonable support for on-
line applications, such as Tele-health, electronic games, etc.,
the transmitted data has to be adapted to current bandwidth,
without significantly affecting human perception.

A. Previous Approaches
Due to different user constraints, the original mesh data

have to be simplified in order to display 3D objects efficiently
at client sites. The 3-dimensional terrain model and height
fields are discussed in [14], [18]. Different mesh simplification
techniques have been proposed for more general 3-
dimensional models in the last decade [11], [22], [35], [38].
Simplification techniques applied on parametric surfaces can
be categorized as follows:
Regular grid – This method is simple to implement, but may
miss critical points degrading visual fidelity.
Hierarchical – Differing from the non-adaptive property of
regular grids, this method provides the adaptive counterpart of
pyramidal structures. Regions are subdivided recursively
forming a tree-like hierarchy [5], [44].
Features – This approach performs triangulation based on a
set of features or critical points. Southard uses the Laplacian as
a measure of curvature to rank feature points, but his approach
applies only to planar surface models and tends to distribute
points uniformly, causing redundancy on low curvature
surfaces and insufficient geometric data on high curvature
surfaces [46]. Some other feature detection techniques found
in the literature are designed for surface reconstruction, and
not for model simplification; e.g., marching cubes [25] and
neighborhood graphs [21].
Refinement – An early refinement technique can be traced
back to the Douglas’s algorithm on 2D curve simplification
[15]. Refinement methods in 3D start with a minimal
approximation on a set of selected points and apply multiple
passes. A test point is initialized at the center of the triangle
and it repeatedly steps up in the neighborhood until a local
maximum is reached [17]. However, their approach may fail to
find the global maximum within the triangle. Schmitt used a
two-stage split-and-merge algorithm [43].
Decimation – In opposition to refinement methods, the idea is
to start with all the scan-points and recursively remove vertices
from the triangulation [23], [57]. Scarlatos [47] suggested an
algorithm involving an initial triangulation and three phases:
shrinking triangles with high curvature, merging adjacent
coplanar triangles, and swapping edges to improve shape.
Optimal – In general, optimal methods are less common than

Feature Extraction on 3D TexMesh Using Scale-
space Analysis and Perceptual Evaluation

Irene Cheng, Student Member, IEEE, Pierre Boulanger, Member, IEEE

E

FP-8

2

heuristic methods because they are slower and more expensive
to implement. The best-effort simplification is obtained within
a tolerance limit, defined by a specific criterion.

B. Motivation
 This paper focuses on mesh mapped with high-resolution

texture (TexMesh). Despite excellent past research on
simplification techniques, what has not been established for
3D TexMesh is a feature extraction technique associating
simplification at multiple scales, taking human perception and
network adaptation into account. Existing techniques in the
literature are inadequate in one or more of the following:
Capability of drastic simplification − Topology preservation
[16] can maintain high fidelity but is not efficient when
considering level of detail (LOD). When viewing an object at
a far distance, the human visual system (HVS) is insensitive to
small genus embedded in the object, and therefore rendering
more triangles in order to preserve these holes is not an
effective way of simplification. The error minimization
techniques are useful to reduce over-sampled data, while
preserving visual fidelity. However, error metric [13][49] can
prevent drastic simplification, which is required when
displaying distant objects.
Supporting both local and global simplification −
Simplification techniques often focus on local property on 3D
surface; they lack consideration of the global structure, which
can result in poor performance on surfaces with high-
frequency details [29], [34], [40].
Efficient online performance − Many simplification techniques
involve relocation of vertices and thus online transmission
cannot be incremental [5], [19], [24], [44], [51]. An image-
driven simplification method is used to display textures using
images from multiple views [33]. However, rendering the
entire model for every edge in every viewpoint for different
scales is expensive, even with hardware-accelerated rendering.
Inserting vertices without improving perceptual quality −
Previous approaches assume that visual quality increases as the
number of vertex increases. However, recent perceptual
evaluation experiments show that after reaching a certain
threshold, further increase in mesh resolution has no
significant impact on perceptual quality [37].
Associating of texture reduction with mesh simplification
using high-resolution real texture mapping − Textures
mentioned in the literature often refers to synthetic or animated
texture [50]. Synthetic textures or per pixel color stored in
each vertex [10], [12], [20], [45], [48] can be estimated or
interpolated. Since high-resolution real texture data is complex
and large compared to mesh data, texture reduction will surely
speed up 3D visualization. Photo-realistic texture maps are
used in [55], but their effort is on recovering geometry from
texture patches retrieved from multiple photographs, and not
on generating LOD. A distance-based technique is applied to
photo-textured terrain [30]; however, color interpolation
between pixels is necessary to avoid blocky appearance of
terrain texture.
Simplification based on perceptual evaluation − Number of

vertices, faces, or an error metric is often used as a criterion to
measure efficiency of simplification techniques in the literature
[38]. A perceptually driven simplification technique is
discussed in [28], but their method applies to the rendering of
a view-dependent image, while our TexMesh model applies to
a view-independent 3D object. They use Gouraud-shaded
meshes while we use real texture mapping. Furthermore, their
simplified models still contain redundant data, because the
authors admitted that their models could be reduced two to
three times further in polygon count without perceptible effect.
Watson compared the naming times, rating and preference
technique [53], but they limited their study to a particular view
of each object, and not a full 360° interactive comparison.
Naming times tend to be affected by an individual’s prior
knowledge of the stimuli. Also, even if the visual quality of an
object is unsatisfactory, a judge may still be able to recognize
it and name it.
Adaptation to bandwidth fluctuation − Joint geometry/texture
progressive coding applies wavelet transform to encode the
mesh and texture data for transmission [36], but the method
cannot adapt to fluctuating bandwidth.

To support heterogeneous clients, the main challenges are:
(1) How to extract features which can best represent the
original object, based on human perception for a given
bandwidth? (2) How to adapt the extracted data to bandwidth
fluctuation minimizing the adverse effect on visual quality? (3)
How to allocate the given bandwidth between mesh and
texture data? Varakliotis did a detailed study on how dynamic
3D models can be adaptively transmitted taking visual quality
into account [52]. His focus is on efficient transmission of the
meshes preserving smooth motion transition. Our focus is on
extracting static 3D features that can best represent the original
model, allocating bandwidth efficiently between mesh and
texture, and applying a texture fragmentation approach to
achieve quality and bandwidth adaptation. The goal of our
TexMesh model is to integrate related research topics from
different directions, and fix the inadequacies of previous
approaches. While visual fidelity has traditionally been
measured using quantitative metric, the TexMesh model
verifies geometric quantities with a perceptual metric.

The rest of the paper is organized as follows: Section 2
reviews Laplacian and Gaussian filtering in scale-space, and
discusses the spherical version of the filtering function.
Section 3 explains how to apply the spherical filtering function
in a TexMesh to extract 3D features, and how variable
qualities are assigned to fragments based on feature point
distribution at multiple scales. Section 4 analyzes perception
of mesh refinement. Section 5 presents a summary of the
TexMesh framework integrating feature detection, textured
mesh simplification, and quality and bandwidth adaptation.
Section 6 gives the conclusion and future work.

II. SCALE-SPACE FILTERING
The Gaussian filter is an efficient smoothing tool in

computer vision. Based on the Gaussian’s kernel, Witkin [54]

FP-8

3

and Koenderink formally defined the scale-space concept in
1983-84. Since then the Gaussian kernel has often been
studied in conjunction with the multiple scale approach.
However, scale-space filtering has mainly been applied in 2D
images [3], [26], [31], [32], and only recently has this
technique been used in computer graphics, with limited
applications in 3D visualization. An intrinsic filter, a
generalization of scale space filtering, is used to eliminate
noise from image and scanned data [1]. Relatively fewer
researchers have looked into 3D model simplification based on
feature point analysis at multiple scales. Southard applied
Laplacian to rank uniformly distributed feature points on
planar surfaces [46]. Gaussian filter is used to detect features
at multiple scales [39], but their analysis is not extended to
mesh integrated with real texture and adaptive on-line
transmission.

A. Level of Detail (LOD) in Scale-Space
We use scale-space filtering (SSF) to extract 3D features.

Traversal between the different scales, or LOD [9] is achieved
by varying the standard deviation parameter σ; the higher the
value the more is the smoothing. SSF is based on locating the
zero-crossings of a signal at multiple scales. Zero-crossings are
used to detect the degree of persistence of a structure (feature)
in a 3D model. Minor structures tend to diminish as σ
increases, and only major structures survive in higher scales.
In other words, minor features will be removed before major
features in the simplification process. The advantage of using
SSF is its ability to smooth locally or globally, moderately or
drastically, depending on the filter window size and the value
of σ. When using a small window size, SSF eliminates signal
noise in the local region. By using a bigger window size, the
filtering or averaging effect covers a larger surface.

Fig. 1: Increasing scale Si from top to bottom. S0 is the original signal
generated by 360 scan points extracted near the bottom of the Nutcracker
model. Note that the local variation (fine detail) in the original signal is
gradually removed and the scaled signal becomes smoother.

Fig. 1 is an example of global smoothing using a window
size of 201 pixels on a signal of 360 values. To obtain global
smoothing, the window size has to be at least twice the
standard deviation computed from the sample space (covering
at least 97.7% of the sample data in a normal distribution). If a
smaller window size is used, smoothing will be restricted and
converge before reaching the bottom scale in Fig.1.
Theoretically, 100% global smoothing will end up with a
monotonous surface losing all the surface features. The
Human Visual System (HSV) is insensitive to details beyond a
certain distance. Thus, for a perceivable object, the filter
window can be smaller than twice the standard deviation. In
our experiments, we applied a window size of 1.4 times the
standard deviation, and found that this window size provides

sufficient simplification for objects placed at a distance close
to infinity.

The zero-crossings at different scales can be computed by
applying the second derivative of the Gaussian (called
Laplacian-of-Gaussian or LoG). Eighteen feature points are
identified in the original signal (Fig. 2, right). By increasing σ,
the number of feature points decreases from 18 to 2 as
reflected by the increasing smoothness of the scaled values
(Fig. 2, left).

Fig. 2: (Left) The top is the original signal with 18 zero crossings, generated
by 36 scan points extracted from the Nutcracker model. The next four
smoothed scales have 8, 6, 4, and 2 zero-crossings respectively. (Right) 18
zero crossings detected in the original signal S0.

SSF in 2D can be summarized by the following equations:













∈

+
−

=

elsewhere

Wyx

yx

eyxGw

0

),()22(

)22(

2
1),(σ

πσ

 (1)













∈

+−













 +−−=

elsewhere

Wyx

yx

eyxyxLoGw

0

),(
22

22

22

22
1

4
1),(σ

σπσ

 (2)

∫
−

∫
−

++=
t

t

t

t
dudvvuwvyuxfyxSf),(),(),(* (3)

wG(x,y) represents the weight at pixel (x,y), f represents the
original signal (image) and f*S the smoothed image and the
weights are assumed to be defined in a square window W of
length 2t+1. In the discrete case, e.g., with a real image,
summation is used instead of integrals, and the Gaussian
weights are normalized so that the sum of all the weights
equals 1.

B. Spherical Approach on Scanned Range Data

Fig. 3: (left) Zoomage 3D scanner, (middle) sample of 3D points, and (right)
texture image.

Modern laser scanners detect depths and generate 3D
vertices in the form of point clouds. Fig. 3 (left) shows a 6-
inch dog model. The generated point cloud (Fig. 3 middle) is
then triangulated and mapped with the scanned texture (Fig. 3
right) to generate the texture mapped 3D object.

The SSF of a 3D model is achieved as follows: First note
that the data acquired (Fig.3 middle) can be represented as
Rx(α,y); where α is the angle on a horizontal plane around the
y-axis of rotation of an object, y is the vertical coordinate, and

FP-8

4

Rx denotes the perpendicular distance from the y-axis to the
surface of an object for a given (α,y) pair. SSF for a 3D model
is thus similar to a 2D image, for the simplified mesh
representation considered here, with f(x,y) replaced by Rx(α,y).
Also, the appropriate scaling along the horizontal and vertical
directions can be significantly different, depending on the
variance of the sample points for a given region. Thus,
Equations (1) and (3) need to be modified to (4) and (5):













∈
−−

=

elsewhere

Wy

y

eyGw

0

),(
22

2

22

2

22

1),(ασ

ψ

σ

φα

πσ
α (4)

∫
−

∫
−

++=
t

t

t

t
dudvvuwvyuRxySRx),(),(),(* αα (5)

For uniform sample points, φ and ψ equal 1, but for
irregular sampling, φ and ψ are used to accommodate the
variable inter-sample distance along different axes. Note that
in the actual implementation we use two passes of 1-D filters,
since all the filters discussed above are separable. The vertices
are first smoothed along the x-axis and then the resulting
values are filtered once more along the y-axis. Fig. 4 shows the
face features, of a head model, changing towards a smoother
spherical surface when going from low to high scales (left to
right). The original mesh contains 1,872 vertices and 3,672
faces. The other five meshes have 2,226, 2,108, 1,948, 1,624
and 1,190 faces respectively.

Fig. 4: Increasing scales from left to right (Top) 3D mesh with texture,
(Middle) 3D mesh and (Bottom) feature points extracted at each level.

III. THE TEXMESH MODEL
Many studies emphasized the importance of million of

triangles to preserve fine details, but ignored the basic fact that
high resolution real texture have been shown to have more
impact on perceptual quality in 3D visualization [27][37][41].
In view of the size of texture data, compressing high-resolution
texture is essential for on-line transmission given limited
bandwidth. An integrated approach, based on feature point
extraction and distribution, is proposed in this paper.

Feature points in our TexMesh model is defined as a group
of vertices, which can best represent the geometry of a 3D
model at a given viewing distance. In Fig. 4, for example, the
original head model contains 1872 feature points (scale S0).
After removing 1196 vertices, it is represented by 676 feature
points at scale S20. At any scale Si, feature points are detected
by applying LoG. Vertices creating zero crossings are recorded
as feature points and assigned the value i. Each feature point is

represented by three components: (i, (tx,ty), (gx,gy,gz)). The
second and third components are the 2D texture and 3D vertex
coordinates, respectively. Vertices with stronger persistence
will have higher i values (higher priority). During
simplification, features of low priority are first removed,
leaving more prominent features at higher scales. We apply
iterative edge collapse operations to generate each simplified
version. During refinement, features of higher priority are
inserted first into the coarse model. Since real texture mapping
is used in the TexMesh model, texture border has to be taken
into account during the simplification process. Vertices
associated with border texels are removed only if an operation
does not distort the texture pattern. Preprocessing generates a
scale map and a fragment map. The scale map records the
feature points at each scale, and the fragment map records the
feature point distribution in each texture fragment.

A. Scale Map

Fig.5: (Left) Texture pattern of a head model associated with the scanned
signal, and (Right) scanned laser signal of the head model generated by the
Zoomage 3D scanner.

Mesh vertices are derived from the signals generated by 3D
scanners. Fig. 5 (right) shows an example of the scanned
signal, which is processed to compute the depth information.
Putting aside the depth information (z-coordinate), N vertices
can be sorted and assigned unique ids L, i.e., 0 ≤ L < N, based
on their y then x coordinates. A Scale Map is a 2D structure
storing the N vertices in rows and columns corresponding to
the y and x values respectively. The default value for each
vertex is 0 corresponding to scale 0 (original signal). At each
scale Si only feature points detected at that scale are updated
with the value i. During preprocessing, Gaussian filters with
increasing sigma values σi are used from scale S0 to Smax, i.e., 0
≤ i ≤ max, with Smax corresponding to scale at infinity. Zero
crossings are detected from the filtered space Gi where G0
represents the set of original unfiltered range data. A priority
queue is implemented to store feature points in decreasing i
values. Starting from a coarse model, feature points not
already included in the mesh can be extracted from the priority
queue to refine the model progressively.

Decimation and refinement are performed using edge
collapse and vertex split operations. There are two main
differences between our edge collapse/vertex split and that
used in progressive meshes [24]: (1) There is no vertex
relocation between different level of detail in our TexMesh; all
vertices at a coarse level is a subset of those at a finer level.
Hoppe’s vertex split operation generates two new vertex
locations in the refined object to replace one vertex in the
coarser object. (2) In progressive meshes, the minimum
energy cost, recalculated each time a new vertex is introduced

FP-8

5

in an edge collapse operation, affects the choice of the next
collapsing edge. In the TexMesh model, the order of
collapsing edges follows the priority predetermined by
applying SSF on the original 3D surface.

Vertex VR is removed by integrating with its closest
neighbor VC, bringing the edges with it (Fig. 6).

Fig. 6: (Left) A finer version before VR is removed, and (Right) A coarser
version after removing VR.

Vertex VR and associated information are transmitted during
refinement to reconstruct the fine version.

B. Fragmentation Approach for Texture Transmission
The TexMesh model associates texture reduction with mesh

simplification. In a 3D object, with full color real texture, there
are two components that can be filtered  the mesh and the
texture. We determine the texture quality),(yxqi of a
fragment (x,y) based on the associated feature point
distribution (x,y)ηi , which has a value ∈ [0,1], and is
mapped onto a quality range. For example, in the current
implementation, we use the JPEG quality scale [0%, 100%].
While wavelet coding applies to the entire image and is
geometry-independent, our approach supports variable quality
determined by the density of surface structures. Note that we
use JPEG for convenience and wide support on the web and in
JAVA; however, standards such as JPEG2000 can be used as
well in the future to code fragments.

The texture image can be transmitted as one block or a
collection of sub-blocks. The advantage of dividing into sub-
blocks is to make use of distributed networks and apply
variable qualities to different texture regions as explained
below. The main concern is whether fragmentation will
increase the overall volume of transmitted data. In this section,
we will show that sub-dividing into smaller blocks of optimal
dimension does not increase the overall volume for high-
resolution texture images. Instead, the sub-block approach
supports bandwidth and quality adaptation. After generating
the scale map, vertices are distributed onto the corresponding
sub-block in a fragment map based on their texel coordinates.

C. Fragment Map and Variable Texture Quality
The image texture is fragmented into Nx*Ny pieces after

determining the optimal size of a fragment. To apply JPEG
compression efficiently, keeping in mind the size of macro-
blocks, the optimal dimension of a fragment is chosen as a
multiple of 16. The entire texture is also adjusted so that there
is no partial fragment. For example, texture with dimension of
4800*1600 pixels can be divided into 7,500 fragments of size
32*32 pixels. Fragments are arranged in a matrix with Ny rows
and Nx columns. Since each 3D vertex is associated with a 2D
texel, it is possible to distribute the vertices into the Nx*Ny

fragments. We used five texture patterns (Fig. 7) to compare
the fragmented and non-fragmented sizes for different qualities
using the Intel JPEG compression library. Each fragment had a
dimension of 16*16 pixels. The 24-bit RGB true color texture
image was read into memory and partitioned into N fragments.
These fragments were compressed independently at quality Q
using the Intel JPEG compression algorithm (Q = 20%, 40%,
50% and 60% were used in the experiments), and saved as
individual JPEG files. The total size of these JPEG files was
recorded as sum of fragments. The texture image, now
composed of compressed patches, was output as one JPEG file
without further compression. The size of this file was recorded
as non-fragmented. Experimental results (Fig.7), using five
different texture images, show that for high-resolution texture
(over 5002 pixels), the fragmentation approach does not
increase the total amount of data transmitted.

Fig. 7: Experimental results show that sum of fragments of optimal size is less
than the size of a corresponding non-fragmented file for high resolution
texture.

The fragmentation approach also supports distributed
transmission. To get around network bottlenecks, applications
can select different route(s) to transmit, or benefit from multi-
servers retrieval [2], by storing texture in multiple repositories.
Instead of requesting an image from a single server, fragments
of an image can be retrieved from multiple servers in a
distributed network [4] and reassembled. Since the texture data
in a TexMesh is organized in fragments, the server can select
less congested routes to transmit fragments.

Since the HVS is less sensitive to details further away, the
texture quality Qi at each scale Si needs to increase only when i
decreases towards a finer model. For the discussion in this
paper, we use viewing distance to represent the distance
between the 3D object and the viewing platform in the virtual
world, which is different from the distance between the viewer
and the display device. Given a viewing distance, the
corresponding Si and Qi are selected. Instead of applying
uniform quality to all fragments, a variable approach is used so
that texture quality of each fragment (x,y) varies depending on
the feature point distribution associated with it. We use the

FP-8

6

following grenade and nutcracker models to illustrate how the
distribution of feature points affects the perceptual quality of
texture. In Fig.8 c & d, the grenade has vertical structures on
the surface, and therefore the feature point distribution is
higher than the back of the nutcracker (Fig.8 a & b), which is
comparatively flat. Note that even if the texture quality is
reduced to half, there is no significant perceptual degradation
on the nutcracker. However, the grenade on the right (Fig.8 d)
shows noticeably lower perceptual quality. While the
difference in quality between the grenades is obvious, the
degraded shiny patch under the belt of the nutcracker (Fig.8 b)
is not noticeable. Based on this finding we adopt a variable
approach by applying different qualities on texture fragments
depending on the feature point distribution, instead of applying
the same quality to every fragment. Furthermore, the variable
qualities are adjusted adaptively based on the current
bandwidth. An adaptive approach is necessary when
transmitting data on the Internet because bandwidth fluctuates
and can adversely affect the expected quality of service (QoS).

 (a) (b) (c) (d)

Fig. 8: A snap shot of the nutcracker 3D model from the back (a and b), and
the military grenade model (c and d), with original texture quality (a and c),
and half of the original texture quality (b and d).

Before explaining how variable qualities are assigned to
different fragments, we define the following terms:
Notation
Si − Scale i , i.e., 0 ≤ i ≤ n where S0 is the original signal and
Sn = Smax is the scale at infinity.
∆Q − Quality tolerance limit for each scale controlled by an
upper and a lower bound. Analogous to the depth of field in
photography, outside which an object is out of focus, ∆Q is the
tolerance range when displaying 3D objects at a given
distance.
Qi − Default texture quality associated with scale Si, by
mapping [S0, Smax] to a quality range, e.g. [100%, 0%] for
JPEG quality.
(x,y) − x and y are the coordinates in the Nx*Ny fragment map.

),(yxqi − Texture quality of fragment (x,y) at Si.
fi(x,y) − Number of feature points in fragment (x,y) at scale Si.

max
if − The maximum number of feature points in a

fragment at scale Si.
min

if − The minimum number of feature points in a fragment
at scale Si.

(x,y)ηi − Normalized value of fi(x,y).

iη − The mean of the normalized values ηi(x,y).
Γ −−−− Feature point distribution threshold, i.e. 0 ≤ Γ ≤ 1, above

which),(yxqi > Qi, and below which),(yxqi < Qi.
di(x,y) − Data size of fragment (x,y) at Si.
Di − Data size of all fragments at Si.

A 3D object has the highest quality at S0 and lowest quality
at Smax. A quality range, e.g. [100%, 0%] for JPEG, can be
mapped onto [S0, Smax]. A linear mapping is employed in the
current implementation for simplicity. A default texture quality
Qi can be obtained based on Si. At scale i, fi(x,y) is normalized
as:

minmax

min
ii

ii
i

ff

f(x,y)f
(x,y)

−

−
=η (6)

The texture quality),(yxqi of fragment (x,y) at scale Si is
computed as:

Γ) ∆Q(x,y)(Q ii −+ η (7)

Fig. 9: Different texture patterns were tested to show how decreasing
fragment data size relates to reducing quality.

The data size of a texture fragment di(x,y) decreases when
its quality qi(x,y) is reduced (Fig. 9). Instead of applying the
same quality to every fragment, we apply variable qualities.

The threshold Γ is first set to iη ∈ [0,1]. Fragments having
feature point distribution equal to the threshold is assigned the
quality Qi, above the threshold have a quality higher than Qi,
and below the threshold have a quality lower than Qi. By
increasing the threshold, more fragments will fall below
quality Qi, and thus the total data size of all fragments Di will
decrease. On the other hand, by decreasing the threshold, more
fragments will have quality higher than Qi, and Di will
increase. ∆Q controls the deviation (+/-) from Qi constrained
by an upper and a lower bound. Regions on the 3D surface
with higher feature point distribution are displayed with higher
quality, and less populated regions are displayed with lower
quality texture. A selected range of thresholds is used to
estimate the data size of different combination of qualities.
Such information is stored in a lookup table (LUT). During
online transmission, the target data size is computed based on
an estimated bandwidth. The quality set from the LUT best
matching the target size is used for bandwidth adaptation.

Our feature extraction and fragmentation approach works
with an adaptive transmission strategy; such as the Harmonic
Time Compensation Algorithm (HTCA) in [6]. The HTCA
defines Π as the deviation from a given time limit for the
entire transmission period. It can be proved that Π is bounded

FP-8

7

by:
nT∆ + (2/1−∆ nT) + Λ+ |))ln(|ln088.1(n (8)

Given n fragments, Λ is the average difference between the
estimated and actual transmission time ∆Tj for the first n-1
fragments, i.e.,

Λ =
1

1

1

−

∆∑
−

=

n

T
n

j
j

. (9)

After testing with three sets of bandwidth values extracted
from an Ethernet connection, it was shown that the overall
time deviation is within 1% of the defined time limit. Details
of the proof and experiments can be seen in [6].

IV. VISUAL PERCEPTION OF MESH REFINEMENT
Since the HVS is insensitive to minute details below a

certain visual threshold, a coarser mesh should be used instead
of a finer one, to save computation and network resources, if
they are visually similar. In this section, we will show that for
some scales it is possible to reduce the mesh resolution,
without degrading visual quality.

Fig. 10: SSF Convergence Analysis – the difference between the maximum
and minimum scaled values diminishes during the smoothing process as the
scale increases.

Based on scale-space theory, the number of feature points
(structures in the sample space) decreases as scale level
increases. Different LOD can be generated, by varying the σ
value in Equation (4). However, different 3D models have
different surface structures and thus the maximum σ value
(σmax) applied to achieve a sufficiently smoothed surface is
different. To determine σmax, we recorded the rate of
convergence while performing SSF. Fig. 10 is an example of
different convergence rates in four sets of sample values,
extracted from (a) a dense head, (b) a dense nutcracker, (c) a
simplified head and (d) a simplified nutcracker object.

For increasing values of σ on the horizontal axis, the
vertical axis represents the difference between the maximum
and minimum scaled values. In other words, a difference of 0
means 100% smoothing. Let us define a convergence threshold
εconv > 0. There are two observations:

(1) When the number of sample values increases, σmax also
increases. Samples (a) and (b) contain more sample values and
require a higher σmax to reach εconv than samples (c) and (d).

(2) Different models have different surface features and

require different σmax to reach εconv.

A. Perceptual Evaluation Experiments and Analysis of
Result based on the Human Visual System
In the perceptual experiments, the visual stimuli were 360°

view-independent texture-mapped 3D objects. The
illumination and texture resolution were fixed for the visual
stimuli, and the judges had to decide whether the simplified
object could be viewed at a closer distance without noticeable
distortion. Since the stimuli had the same illumination, contrast
sensitivity did not affect our result. Visual acuity is
significantly higher at the fovea than in the visual periphery
[42], and is an important factor when considering gaze-
directed perceptual evaluation. However, our rotating 3D
objects were view-independent, balancing the visual acuity
between the fovea and its periphery after an object had rotated
a complete cycle. Until recently [37], perceptual comparisons
in the literature have focused on view-dependent display,
which shows only a limited number of silhouettes. By contrast,
using a 360° view allows all silhouettes to be examined.

Viewing distance is defined from 0 to infinity where an
object vanishes. For each object, the scales generated by value
σ ∈ [0, σmax] are mapped onto corresponding distances in the
range [0, ∞]. In the experiments, we used 20 scales in addition
to the original signal to cover this range so that S0 corresponds
to σ = 0 and Smax (S20) corresponds to σmax.

In the experiments, a simplified version of the 3D object
was generated and displayed at a distance related linearly with
its scale, i.e. S0 is closest and Smax is farthest. Judges had to
decide whether the coarser version on the right was
perceptually similar to the original version on the left. If no,
they moved the simplified version away to a satisfactory
position. If yes, the judges moved it closer until there was a
noticeable distortion. Both objects were rotating, so that the
judges could compare a complete 360° view. For each of the
five objects (nutcracker, head, dog, grenade and vase), a
number of simplified versions were randomly generated.
Preliminary results suggest that, in some cases, a coarser
version can be used. When plotting the function between
distance and scale, it is very close to a step shape (Fig.11). The
x-axis is the scale and y-axis is the distance with zero being the
closest. The distance increases in the negative direction.

We analyze the result by dividing the graph into alternate
red (perceptible) and green (imperceptible) zones, with the red
zone corresponding to the slope and the green zone
corresponding to the comparatively flat portion. In the red
zone, elimination of perceptually important feature points
causes a noticeable degradation in visual quality. While in the
green zone, feature points eliminated do not have significant
perceptual effect. For example, changing the scale from B to A
does not improve perceptual quality, while refining from C to
B has significant impact. For each object, the step function is
unique, containing more or less steps depending on the surface
features of the object. The step function suggests that
perceptually less important data can be suppressed during
refinement, using major scales (all those in the red perceptible

FP-8

8

zone) to represent LOD.

Fig.11: Preliminary results show that at a given distance, different scales can
have similar visual quality. Scale relating to distance is close to a step
function.

Given a distance d, we locate the corresponding scale Si. If
Si falls into a green zone, the rightmost major scale is selected,
because using other scales (minor scales) in the zone does not
improve visual quality. If Si falls into a red zone, Si is used
because each scale in the zone is a major scale.

The step function is consistent with the convergence
property of SSF shown in Fig. 10. We already noted that
objects with more scan-points (samples a & b) take longer to
converge to a predefined value εconv, but more importantly, for
each sample, the convergence rate is not constant. Since the
HVS is insensitive to minute changes below a certain limit
(e.g. the convergence rate between i and j), refining the scale
from 2 to 1 will not have significant impact on the visual
quality. However, the convergence rate between j and k
indicates a significant effect on visual quality with changing
scale.

B. Mesh Refinement based on Major Scales
When a 3D object moves closer to the viewer, the mesh

scale is upgraded only if the refined mesh improves visual
quality. Reddy approximates the contrast sensitivity function
(CSF) in dynamic scenes to optimize the amount of detail
removed from the scene without the user noticing [60]. By
contrast, our method is designed for comparatively static 3D
objects. To determine whether mesh refinement should be
performed requires measuring perceptual impact. Adding or
deleting a structure generates a stimulus to human vision. To
compare the perceptual impacts of these stimuli, the dimension
of a structure can be used as a visual cue. In each edge
collapse operation during preprocessing, when a vertex VR is
removed and integrated with its closest neighbor VC, the
surface change is proportional to the distance ρR between VR

and the average plane formed by its neighbors. ρR is defined as
the perceptual value of VR. If both VPVQ and VQVC collapse,
the perceptual value of the combined stimulus is the cumulated
sum of ρP and ρQ (Fig. 12).

Fig.12 Vertices VR, VP and VQ have perceptual values ρR, ρP and ρQ
respectively.

Let ∆℘ be the maximum perceptual value when refining
from Si to Si-1, and ℘ be the length of the cross-section of the

3D object in the direction of ∆℘. When viewed on the client’s
display device, the extension ∆℘ generates an angle ∆θ as a
stimulus, increasing the original angle θ cast by ℘ (Fig. 13).
The Difference Threshold K℘, or Just Noticeable Difference
(JND), is the minimum change in perceptual value in order to
produce a noticeable variation in visual experience. Weber’s
Law [58] states that the size of the JND is a constant
proportional to the original stimulus value. Similar to intensity
contrast, we apply Weber’s Law on perceptual value, i.e.,

K=
℘
℘∆

 (10)

If K > K℘, perceptual impact is significant and Si is refined to
Si-1. Weber’s Law can be applied to a variety of stimuli,
including brightness, loudness, mass, line length, size, etc.

Fig.13: To evaluate the impact of perceptual values ∆℘, by comparing
∆℘/℘ with the difference threshold.

Previous refinement techniques assume that visual quality
increases when the number of vertices increases. We show by
perceptual experiment that geometrically different meshes can
be perceptually similar. Bandwidth should be allocated to
texture data if a denser mesh does not improve visual quality.

Another approach is to follow the argument that humans
naturally describe an object as consisting of parts and infer 3D
shapes of these parts [59], and segment the object into
corresponding parts (skeletonization). ∆ρ is computed by
dividing the displacement of VR by the shortest distance from
VC to the skeleton, when collapsing VR onto VC. For spherical –
like object, the skeleton can be represented by the center of the
object. Instead of computing the fraction ∆ρ using linear
measurements, an alternative is to use the quadric error
generated by removing VR. We performed 361 perceptual
evaluations on the nutcracker object (Fig. 1) involving twenty
judges, and found that the threshold K℘ is approximately
0.096 with a correlation coefficient of 95%, when using linear
measurement to compute ∆ρ. The result shows that the linear
metric predicts visual quality well, closely following human
perception.

Based on this preliminary finding, we are extending our
effort to increase the number of judges and 3D models to
further verify the difference threshold for mesh refinement. We
expect that texture resolution and complexity will affect the
threshold. This is an issue we will address in future
experiments.

V. AN INTEGRATED FRAMEWORK
Online 3D visualization is an expanding area of multimedia

FP-8

9

research covering graphics, human perception and network
transmission. Quality and bandwidth adaptation is important in
3D textured mesh simplification. Short-term fluctuations are
difficult to adapt. In fact, for applications using small images
and short transmission time, applying an historic average to
estimate the network bandwidth is sufficient [8]. Our method
addresses the transmission of high-resolution images where the
transmission time is long. An increasingly popular area of
research is related to Tele-conferencing, where artists,
designers, physicians, surgeons, etc. can exchange ideas
remotely. In order for the participants to edit a 3D object
collaboratively [7], the entire object needs to be transmitted
before editing, so that a complete 360° view is available to
every participant.

To handle longer-term fluctuations, an optimal bandwidth
monitoring approach was suggested [56] to provide more
accurate bandwidth estimation by sacrificing a portion of the
time to transmit test data. Our adaptive approach does not need
to use test packets. Instead, bandwidth is efficiently utilized by
adjusting the quality of the fragments not yet transmitted based
on feedback about the traffic. The entire texture map is divided
into fragments of optimal size. Given a viewing distance and a
historic average bandwidth, the corresponding scale and a
default texture quality are selected. The first fragment is
transmitted with the default quality. The idea is to re-estimate
the current bandwidth based on the transmission time of the
previous fragment(s). The server continues to transmit, until a
new update is available. The current bandwidth is then used to
re-compute the qualities of the remaining fragments. The over
or under estimation time from pervious fragment(s) is
distributed to the remaining fragments. This adaptive strategy
ensures that when the transmission is completed the overall
time discrepancy, compared with the predefined time limit, is
minimized [6].

In recent work [37], it was found that improving mesh
resolution improves perceptual quality following an
exponential curve whereas enhancing texture relates to
perceptual quality linearly. Based on this finding and the fact
that the texture component in a 3D image requires greater
storage or bandwidth for communication, we use SSF analysis
to integrate texture reduction with mesh simplification. The
approach can be summarized as follows:
Preprocessing
(a) Perform a SSF analysis of the 3D object and identify
regions of strong persistent structures vs. regions of small
surface variations, at different scales.
(b) Generate a priority list of feature points from strong to
weak persistence. Compute the perceptual value associated
with each deleted feature point between scales, and determine
the maximum.
(c) Divide the model texture into fragments of optimal size.
Generate a fragment map for each scale Si by distributing the
feature points onto the corresponding texture fragment.
(d) For each scale Si use a lookup table to record the fragment
data size, and associated qualities for a selected range of Γ.

Runtime processing
(a) Given a viewing distance, obtain the corresponding scale
Si. Shift Si to a coarser version if the change does not affect
visual quality.
(b) Use the initial bandwidth (historic average) B0, and T0 to
locate the best matching set of texture fragments in the lookup
table. T0 is the given time limit minus the time required to
transmit the mesh data.
(c) Adjust the texture quality of each fragment using an
adaptive approach and transmit the texture fragments.
(d) Client site recombines fragments and renders the texture-
mapped 3D model.

VI. CONCLUSION AND FUTURE WORK
The TexMesh model proposed in this paper integrates mesh

simplification and texture reduction based on scale-space
analysis. We apply LoG to detect zero-crossings at each scale
and generate statistics including a scale map and fragment map
during preprocessing. These statistics are used during runtime
for efficient extraction and transmission of 3D data. Feature
points are transmitted only if they contribute to visual quality.
Variable qualities applied to texture fragments, determined by
feature point distribution, are readjusted during transmission to
adapt to fluctuations in bandwidth. Experimental results show
that this adaptive approach utilizes bandwidth more efficiently,
and provides better control on QoS.

Packet loss during transmission is a common problem.
When no other data is competing for bandwidth, redundant
mesh data can ensure that the rendered quality will not be
significantly affected by missing vertices. Since our method is
designed for transmitting a 3D textured mesh, each 3D vertex
is associated with a 2D texel. By transmitting the vertex and
texel coordinates in separate packets, the (x,y) coordinates, if
lost, can be estimated based on its texel counterpart received in
a separate packet. Recall that feature points in the priority
queue represent decreasing structure sizes. Therefore the depth
component, z, can be estimated by taking the average of the
previous and next feature points. However, this packet loss
strategy works only when the application can tolerate a certain
degree of estimation error. For applications, which require
high precision, retransmission is more appropriate.

The step function relating scales with a given distance,
which is consistent with the convergence property of scale-
space filtering, suggests an efficient way to suppress redundant
data during mesh refinement. Simplification techniques in the
literature often use number of vertices, triangles, or a
quantitative metric to measure efficiency. We show by
experiments that perceptual quality is a more reliable measure
when the HVS is involved.

View-dependent rendering, when used in a user
collaboration situation [7], requires the server to keep track of
a large number of different rendered views and transmit
different sets of edited data based on each viewpoint. There is
a trade-off between rendering the complete object at the outset
and on-demand. For example, when the user decides to view

FP-8

10

high-resolution medical data, museum exhibits, E-commerce
products, etc., reserving time at the beginning to download the
complete object enables swift subsequent navigation. The
alternative is to wait for incremental update after each change
of view. In future experiments, we will incorporate view-
dependent perceptual evaluations to improve our results.

REFERENCES
[1] P. Boulanger, O. Jokinen and A. Beraldin, “Intrinsic filtering of range
images using a physically based noise model,” VI 2002, Calgary.
[2] A. Basu, I. Cheng and Y. Yu, “Multi-Server optimal bandwidth
monitoring for QoS based multimedia delivery,” IEEE Int’l Symposium on
Circuit and Systems, May 2003 Bangkok, Thailand.
[3] D. Bauer and R. Peikert, “Vortex tracking in scale-space,” Eurographics-
IEEE TCVG Symposium on Visualization, 2002.
[4] A. Basu, M. Pi, I. Cheng and M. Bates, “Distributed retrieval of wavelet
images using bandwidth monitoring,” Proceeding IAPR/IEEE Int’l
Conference on Pattern Recognition, Aug 2002 Quebec City.
[5] D. Brodsky and B. Watson, “Model simplification through refinement”,
Proc. of Graphics Interface 2000.
[6] I. Cheng and P. Boulanger, “Adaptive online transmission of 3D TexMesh
using scale-space analysis,” 3DPVT Sept. 2004, Greece.
[7] I. Cheng, M. Bates and A. Basu, “Collaborative online 3D editing,”
Siggraph 2003 Webgraphics, San Diego CA USA.
[8] I. Cheng, A. Basu, Y. Zhang and S. Tripathi, "QoS specification and
adaptive bandwidth monitoring for multimedia delivery," Proc. IEEE
EUROCON, Slovakia, 2001.
[9] J. Clark, “Hierarchical geometric models for visible surface algorithms,”
Comm. ACM, vol. 19, no. 10, 1976, p. 547-554.
[10] D. Cohen-Or, Y. Mann, S. Fleishman, “Deep compression for streaming
texture intensive animations”, Siggraph 1999.
[11] P. Cignoni, C. Montani, R. Scopigno, “ A comparison of mesh
simplification algorithms,” Computer and Graphics, p. 37-54,1998.
[12] J. Cohen, M. Olano and D. Manocha, “Appearance-preserving
simplification”, Siggraph 1998.
[13] J. Cohen, A. Varshney, D. Manocha, G. Turk and H. Weber,
“Simplification envelopes”, Siggraph 1996.
[14] P. Cignoni, E. Puppo, R. Scopigno, “Representation and visualization of
terrain surfaces at variable resolution”, The Visual Computer Vol.13 (5): p.
199-217, 1997.
[15] D. Douglas and T. Peucker, “Algorithms for the reduction of the number
of points required to represent a digitized line or its caricature,” The Canadian
Cartographer, 10(2): p. 112–122, 1973.
[16] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery and W.
Stuetzle, “Multiresolution analysis of arbitrary meshes,” Computer Graphics
(Proc. Siggraph 95), vol. 29, ACM Press, New York, 1995, p. 173-182.
[17] R. Fowler and J. Little, “Automatic extraction of irregular network
digital terrain models,” Computer Graphics Proceedings, Annual Conference
Series, p. 199-207. ACM Siggraph, 1979.
[18] L. Floriani, P. Magillo, E. Puppo, “ Variant: A system for terrain
modeling at variable resolution”, GeoInformatica 4:3, p. 287-315, 2000
Kluwer Academic Publishers.
[19] M. Garland and P. Heckbert, “Surface simplification using quadric error
metrics”, Siggraph 1997.
[20] M. Garland and P. Heckbert, “Simplifying surfaces with color and
texture using quadric error metrics”, IEEE Visualization 1998.
[21] S. Gumhold, X. Wang and R. Macleod, “Feature extraction from point
clouds”, Proc. 10th Int’l Meshing Roundtable 2001.
[22] P. S. Heckbert, M. Garland, “Survey of polygonal surface simplification
algorithms”, Multiresolution Surface Modeling Course Siggraph 1997.
[23] P. Hinker and C. Hansen, “Geometric optimization,” In Proc.
Visualization 1993, p. 189–195, San Jose CA, October 1993.
[24] H. Hoppe, “Progressive meshes” Siggraph 1996, L.A. p. 99-108.
[25] L. Kobbelt, M. Botsch, U. Schwanecks and H. Seidel, “Feature sensitive
surface extraction from volume data,” Siggraph 2001.
[26] A. Kuijper and L. Florack, “Logical filtering in scale space”, Institute of
Information and Computing Sciences, Utrecht University, TR, 2001.
[27] D. Koller, M. Turitzin, M. Levoy, M. Tarini, G. Croccia, P. Cignoni and
R. Scopigno, “Protected interactive 3D graphics via remote rendering,”
Siggraph 2004, Los Angeles, CA USA.

[28] D. Luebke and B. Hallen, “Perceptually driven simplification for
interactive rendering”, 12th Eurographics Workshop on Rendering
Techniques, London, UK 2001.
[29] P. Lindstrom, “Out-of-core simplification of large polygonal models,”
ACM Computer Graphics (Proc. Siggraph 2000), Vol. 34, 2000, p. 259-262.
[30] P. Lindstrom et al., “Level of detail management for real-time rendering
of phototextured terrain”, TR-95-06, GeorgiaTech.
[31] T. Lindberg, “A scale selection principle for estimating image
deformations,” ICCV, Cambridge, MA, USA, 1995, p. 134-141.
[32] T. Lindberg, “Feature detection with automatic scale selection,”
International Journal of Computer Vision, No. 2, 1998.
[33] P. Lindstrom and G. Turk, “Image-driven simplification”, ACM Tran.
On Graphics, 2000.
[34] K-L. Low and T. S. Tan, “Model simplification using vertex clustering,”
Proc. 1997 Symp. Interactive 3D Graphics, ACM Press, 1997, p. 75-82.
[35] D. P. Luebke, “A Developer’s survey of polygonal simplification
algorithms”, IEEE Computer Graphics and Applications, May/June ’01, 24-
35.
[36] M. Okuda and T. Chen, “Joint geometry/texture progressive coding of
3D models”, IEEE Int’l Conf. on Image Processing (ICIP), Vancouver 2000.
[37] Y. Pan, I. Cheng and A. Basu, “Quantitative metric for estimating
perceptual quality of 3D objects,” IEEE Trans. on Multimedia, April 2004.
[38] M. Pauly, M. Gross and L. Kobbelt, “Efficient simplification of point-
sampled surfaces”, IEEE Visualization 2002, 2002.
[39] M. Pauly, R. Keiser and M. Gross, “Multi-scale feature extraction on
point-sampled surfaces,” Eurographics 2003, Granada, Spain.
[40] J. Rossignac and P. Borrel, “Multi-resolution 3D approximations for
rendering complex scenes,” Geometric Modeling in Computer Graphics,
Springer-Verlag, Berlin, 1993, p. 455-465.
[41] H. Rushmeier, B. Rogowitz and C. Piatko, “Perceptual issues in
substituting texture for geometry,” Proceeding of SPIE Vol.3935, p372-383.
[42] J. Rovamo and V. Virsu, “An estimation and application of the human
cortical magnification factor”, Experimental Brain Research, 37 (1979).
[43] F. Schmitt and X. Chen, “Fast segmentation of range images into planar
regions”, IEEE Computer Vision and Pattern Recognition p. 710-711, 1991.
[44] E. Shaffer and M. Garland, “Efficient adaptive simplification of massive
meshes”, IEEE Visualization 2001.
[45] M. Soucy, G. Godin and M. Rioux, “A texture-mapping approach for the
compression of colored 3D triangulations”, The Visual Computer (1996) 12:
p. 503-514.
[46] D. A. Southard, “Piecewise planar surface models from sampled data”,
in N. M. Patrikalakis, editor, Scientific Visualization of Physical Phenomena,
p. 667-680, Tokyo, 1991. Springer-Verlag.
[47] L. L. Scarlatos and T. Pavlidis, “Optimizing triangulations by
curvature equalization”, IEEE Visualization, p. 333-339, 1992.
[48] P. Sander, J. Snyder, S. Gortler and H. Hoppe, “Texture mapping
progressive meshes”, Siggraph 2001.
[49] W. Schroeder, J. Zarge and W. Lorensen, “Decimation of triangle
meshes”, Siggraph 1992, p. 65-70.
[50] G Turk, “Generating texture on arbitrary surfaces using reaction-
diffusion”, Siggraph 1991.
[51] G Turk, “Re-tiling polygonal surfaces”, Siggraph 1992.
[52] S. Varakliotis, “QoS-enabled streaming of animated 3D wireframe
models,” Ph.D. Thesis Mar 2004, Dept. of CS, Univ. of London.
[53] B. Watson, A. Friedman and A. Mcgaffey, “Measuring and predicting
visual fidelity”, Siggraph 2001 August, Los Angeles, CA USA.
[54] A. Witkin, “Scale-space filtering,” International Joint Conference on AI,
1983, p. 1019-1022.
[55] Y. Yu, A. Ferencz and J. Malik, “Compressing texture maps for large
real environments”, Siggraph 2000 Sketch.
[56] Y. Yu, I. Cheng and A. Basu, “Optimal adaptive bandwidth monitoring,”
IEEE Trans. on Multimedia, September 2003.
[57] A.D. Kalvin, C. Cutting, B. Haddad and M. Noz, “Constructing
topologically connected surfaces for the comprehensive analysis of 3D
medical structures,” SPIE Vol. 14, p. 247–259, 1991.
[58] R. Gonzalez and R. Woods, “Digital Image Processing,” second edition,
2002 Prentice Hall p39-42.
[59] M. Zerroug and R. Nevatia, “Part-based 3D descriptions of complex
objects from a single image,” IEEE Trans. on PAMI, Vol 21, no. 9, Sep.
1999.
[60] M. Reddy, “Perceptually optimized 3D graphics,” IEEE Applied
Perception, September/October 2001.

	INTRODUCTION
	Previous Approaches
	Motivation

	scale-space filtering
	Level of Detail (LOD) in Scale-Space
	Spherical Approach on Scanned Range Data

	the texmesh model
	Scale Map
	Fragmentation Approach for Texture Transmission
	Fragment Map and Variable Texture Quality

	Visual Perception of mesh refinement
	Perceptual Evaluation Experiments and Analysis of Result based on the Human Visual System
	Mesh Refinement based on Major Scales

	an integrated framework
	Conclusion and future work

