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Abstract— Efficient on-line visualization of 3D textured models is 
essential for a variety of applications including not only games 
and e-commerce, but also heritage and medicine. To visualize 3D 
objects online, it is necessary to quickly adapt both mesh and 
texture to the available computational or network resources. 
Earlier research showed that after reaching a minimum required 
mesh density, high-resolution texture has more impact on human 
perception than a denser mesh. Given limited bandwidth, an 
important issue is how to extract features that best represent the 
original object, and how to allocate resources between mesh and 
texture data to achieve optimal perceptual quality. In this paper, 
we propose a textured mesh (TexMesh) model, which applies 
scale-space analysis (SSF) and perceptual evaluation to extract 
3D features for textured mesh simplification and transmission. 
Texture data is divided into fragments to facilitate quality and 
bandwidth adaptation. Texture quality assignment is based on 
feature point distribution. On-line transmission is based on 
statistics gathered during preprocessing, which are stored in a 
priority queue and lookup tables. Quality of Service (QoS) 
requested by a client site can be met by applying an efficient 
adaptive algorithm to ensure optimal use of the specified time and 
available bandwidth, and at the same time preserving satisfactory 
quality. Our TexMesh framework integrates feature extraction, 
mesh simplification, texture reduction, bandwidth adaptation, 
and perceptual evaluation into a multi-scale visualization 
framework. 
 

Index Terms— Bandwidth adaptation, feature extraction, 
LOD, perceptual evaluation, scale-space analysis, texture 
reduction. 

I. INTRODUCTION 
FFICIENT online visualization of 3D objects is essential 
in multimedia applications. In the past, because of the 

constraints on rendering hardware and scanning techniques, 
only limited number of polygons was used to represent the 
geometry of 3D objects; resulting in poor visual quality. 
However, with advancements in rendering techniques and 
scanning technology, 3D objects in the virtual world can now 
be presented with denser meshes and high-resolution textures. 
While the availability of an increased amount of 3D range data 
brings promise to multimedia applications, it also imposes 
challenges to researchers especially for on-line transmission. 
Although network speed has been improved significantly in 
recent years, it is not always fast enough to transmit data with 
sufficiently low latency to satisfy the Human Visual System 
(HVS). Another problem on the Internet is fluctuating 
bandwidth, and bottleneck during periods of high traffic. To 

solve these problems and provide reasonable support for on-
line applications, such as Tele-health, electronic games, etc., 
the transmitted data has to be adapted to current bandwidth, 
without significantly affecting human perception.  

A. Previous Approaches 
Due to different user constraints, the original mesh data 

have to be simplified in order to display 3D objects efficiently 
at client sites. The 3-dimensional terrain model and height 
fields are discussed in [14], [18]. Different mesh simplification 
techniques have been proposed for more general 3-
dimensional models in the last decade [11], [22], [35], [38]. 
Simplification techniques applied on parametric surfaces can 
be categorized as follows: 
Regular grid – This method is simple to implement, but may 
miss critical points degrading visual fidelity.  
Hierarchical – Differing from the non-adaptive property of 
regular grids, this method provides the adaptive counterpart of 
pyramidal structures. Regions are subdivided recursively 
forming a tree-like hierarchy [5], [44].  
Features – This approach performs triangulation based on a 
set of features or critical points. Southard uses the Laplacian as 
a measure of curvature to rank feature points, but his approach 
applies only to planar surface models and tends to distribute 
points uniformly, causing redundancy on low curvature 
surfaces and insufficient geometric data on high curvature 
surfaces [46]. Some other feature detection techniques found 
in the literature are designed for surface reconstruction, and 
not for model simplification; e.g., marching cubes [25] and 
neighborhood graphs [21].  
Refinement – An early refinement technique can be traced 
back to the Douglas’s algorithm on 2D curve simplification 
[15]. Refinement methods in 3D start with a minimal 
approximation on a set of selected points and apply multiple 
passes. A test point is initialized at the center of the triangle 
and it repeatedly steps up in the neighborhood until a local 
maximum is reached [17]. However, their approach may fail to 
find the global maximum within the triangle. Schmitt used a 
two-stage split-and-merge algorithm [43].  
Decimation – In opposition to refinement methods, the idea is 
to start with all the scan-points and recursively remove vertices 
from the triangulation [23], [57]. Scarlatos [47] suggested an 
algorithm involving an initial triangulation and three phases: 
shrinking triangles with high curvature, merging adjacent 
coplanar triangles, and swapping edges to improve shape. 
Optimal – In general, optimal methods are less common than 
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heuristic methods because they are slower and more expensive 
to implement. The best-effort simplification is obtained within 
a tolerance limit, defined by a specific criterion. 

B. Motivation 
 This paper focuses on mesh mapped with high-resolution 

texture (TexMesh). Despite excellent past research on 
simplification techniques, what has not been established for 
3D TexMesh is a feature extraction technique associating 
simplification at multiple scales, taking human perception and 
network adaptation into account. Existing techniques in the 
literature are inadequate in one or more of the following: 
Capability of drastic simplification − Topology preservation 
[16] can maintain high fidelity but is not efficient when 
considering level of detail (LOD). When viewing an object at 
a far distance, the human visual system (HVS) is insensitive to 
small genus embedded in the object, and therefore rendering 
more triangles in order to preserve these holes is not an 
effective way of simplification. The error minimization 
techniques are useful to reduce over-sampled data, while 
preserving visual fidelity. However, error metric [13][49] can 
prevent drastic simplification, which is required when 
displaying distant objects.  
Supporting both local and global simplification − 
Simplification techniques often focus on local property on 3D 
surface; they lack consideration of the global structure, which 
can result in poor performance on surfaces with high-
frequency details [29], [34], [40]. 
Efficient online performance − Many simplification techniques 
involve relocation of vertices and thus online transmission 
cannot be incremental [5], [19], [24], [44], [51]. An image-
driven simplification method is used to display textures using 
images from multiple views [33]. However, rendering the 
entire model for every edge in every viewpoint for different 
scales is expensive, even with hardware-accelerated rendering. 
Inserting vertices without improving perceptual quality − 
Previous approaches assume that visual quality increases as the 
number of vertex increases. However, recent perceptual 
evaluation experiments show that after reaching a certain 
threshold, further increase in mesh resolution has no 
significant impact on perceptual quality [37]. 
Associating of texture reduction with mesh simplification 
using high-resolution real texture mapping − Textures 
mentioned in the literature often refers to synthetic or animated 
texture [50]. Synthetic textures or per pixel color stored in 
each vertex [10], [12], [20], [45], [48] can be estimated or 
interpolated. Since high-resolution real texture data is complex 
and large compared to mesh data, texture reduction will surely 
speed up 3D visualization. Photo-realistic texture maps are 
used in [55], but their effort is on recovering geometry from 
texture patches retrieved from multiple photographs, and not 
on generating LOD. A distance-based technique is applied to 
photo-textured terrain [30]; however, color interpolation 
between pixels is necessary to avoid blocky appearance of 
terrain texture.  
Simplification based on perceptual evaluation − Number of 

vertices, faces, or an error metric is often used as a criterion to 
measure efficiency of simplification techniques in the literature 
[38]. A perceptually driven simplification technique is 
discussed in [28], but their method applies to the rendering of 
a view-dependent image, while our TexMesh model applies to 
a view-independent 3D object. They use Gouraud-shaded 
meshes while we use real texture mapping. Furthermore, their 
simplified models still contain redundant data, because the 
authors admitted that their models could be reduced two to 
three times further in polygon count without perceptible effect. 
Watson compared the naming times, rating and preference 
technique [53], but they limited their study to a particular view 
of each object, and not a full 360° interactive comparison. 
Naming times tend to be affected by an individual’s prior 
knowledge of the stimuli. Also, even if the visual quality of an 
object is unsatisfactory, a judge may still be able to recognize 
it and name it. 
Adaptation to bandwidth fluctuation − Joint geometry/texture 
progressive coding applies wavelet transform to encode the 
mesh and texture data for transmission [36], but the method 
cannot adapt to fluctuating bandwidth. 

To support heterogeneous clients, the main challenges are: 
(1) How to extract features which can best represent the 
original object, based on human perception for a given 
bandwidth? (2) How to adapt the extracted data to bandwidth 
fluctuation minimizing the adverse effect on visual quality? (3) 
How to allocate the given bandwidth between mesh and 
texture data? Varakliotis did a detailed study on how dynamic 
3D models can be adaptively transmitted taking visual quality 
into account [52]. His focus is on efficient transmission of the 
meshes preserving smooth motion transition. Our focus is on 
extracting static 3D features that can best represent the original 
model, allocating bandwidth efficiently between mesh and 
texture, and applying a texture fragmentation approach to 
achieve quality and bandwidth adaptation. The goal of our 
TexMesh model is to integrate related research topics from 
different directions, and fix the inadequacies of previous 
approaches. While visual fidelity has traditionally been 
measured using quantitative metric, the TexMesh model 
verifies geometric quantities with a perceptual metric. 

The rest of the paper is organized as follows: Section 2 
reviews Laplacian and Gaussian filtering in scale-space, and 
discusses the spherical version of the filtering function. 
Section 3 explains how to apply the spherical filtering function 
in a TexMesh to extract 3D features, and how variable 
qualities are assigned to fragments based on feature point 
distribution at multiple scales. Section 4 analyzes perception 
of mesh refinement.  Section 5 presents a summary of the 
TexMesh framework integrating feature detection, textured 
mesh simplification, and quality and bandwidth adaptation. 
Section 6 gives the conclusion and future work. 

II. SCALE-SPACE FILTERING 
The Gaussian filter is an efficient smoothing tool in 

computer vision. Based on the Gaussian’s kernel, Witkin [54] 
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and Koenderink formally defined the scale-space concept in 
1983-84. Since then the Gaussian kernel has often been 
studied in conjunction with the multiple scale approach. 
However, scale-space filtering has mainly been applied in 2D 
images [3], [26], [31], [32], and only recently has this 
technique been used in computer graphics, with limited 
applications in 3D visualization. An intrinsic filter, a 
generalization of scale space filtering, is used to eliminate 
noise from image and scanned data [1]. Relatively fewer 
researchers have looked into 3D model simplification based on 
feature point analysis at multiple scales.  Southard applied 
Laplacian to rank uniformly distributed feature points on 
planar surfaces [46]. Gaussian filter is used to detect features 
at multiple scales [39], but their analysis is not extended to 
mesh integrated with real texture and adaptive on-line 
transmission. 

A. Level of Detail (LOD) in Scale-Space 
We use scale-space filtering (SSF) to extract 3D features. 

Traversal between the different scales, or LOD [9] is achieved 
by varying the standard deviation parameter σ; the higher the 
value the more is the smoothing. SSF is based on locating the 
zero-crossings of a signal at multiple scales. Zero-crossings are 
used to detect the degree of persistence of a structure (feature) 
in a 3D model. Minor structures tend to diminish as σ 
increases, and only major structures survive in higher scales. 
In other words, minor features will be removed before major 
features in the simplification process. The advantage of using 
SSF is its ability to smooth locally or globally, moderately or 
drastically, depending on the filter window size and the value 
of σ. When using a small window size, SSF eliminates signal 
noise in the local region. By using a bigger window size, the 
filtering or averaging effect covers a larger surface.  

 
Fig. 1: Increasing scale Si from top to bottom. S0 is the original signal 
generated by 360 scan points extracted near the bottom of the Nutcracker 
model. Note that the local variation (fine detail) in the original signal is 
gradually removed and the scaled signal becomes smoother. 
 

Fig. 1 is an example of global smoothing using a window 
size of 201 pixels on a signal of 360 values. To obtain global 
smoothing, the window size has to be at least twice the 
standard deviation computed from the sample space (covering 
at least 97.7% of the sample data in a normal distribution). If a 
smaller window size is used, smoothing will be restricted and 
converge before reaching the bottom scale in Fig.1. 
Theoretically, 100% global smoothing will end up with a 
monotonous surface losing all the surface features.  The 
Human Visual System (HSV) is insensitive to details beyond a 
certain distance. Thus, for a perceivable object, the filter 
window can be smaller than twice the standard deviation. In 
our experiments, we applied a window size of 1.4 times the 
standard deviation, and found that this window size provides 

sufficient simplification for objects placed at a distance close 
to infinity.  

The zero-crossings at different scales can be computed by 
applying the second derivative of the Gaussian (called 
Laplacian-of-Gaussian or LoG). Eighteen feature points are 
identified in the original signal (Fig. 2, right). By increasing σ, 
the number of feature points decreases from 18 to 2 as 
reflected by the increasing smoothness of the scaled values 
(Fig. 2, left).  

 
Fig. 2: (Left) The top is the original signal with 18 zero crossings, generated 
by 36 scan points extracted from the Nutcracker model. The next four 
smoothed scales have 8, 6, 4, and 2 zero-crossings respectively. (Right) 18 
zero crossings detected in the original signal S0. 
 
SSF in 2D can be summarized by the following equations: 
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wG(x,y) represents the weight at pixel (x,y),  f represents the 
original signal (image) and f*S the smoothed image and the 
weights are assumed to be defined in a square window W of 
length 2t+1. In the discrete case, e.g., with a real image, 
summation is used instead of integrals, and the Gaussian 
weights are normalized so that the sum of all the weights 
equals 1. 

B. Spherical Approach on Scanned Range Data 

 
Fig. 3: (left) Zoomage 3D scanner, (middle) sample of 3D points, and (right) 
texture image. 

Modern laser scanners detect depths and generate 3D 
vertices in the form of point clouds. Fig. 3 (left) shows a 6-
inch dog model. The generated point cloud (Fig. 3 middle) is 
then triangulated and mapped with the scanned texture (Fig. 3 
right) to generate the texture mapped 3D object. 

The SSF of a 3D model is achieved as follows: First note 
that the data acquired (Fig.3 middle) can be represented as 
Rx(α,y);  where α is the angle on a horizontal plane around the 
y-axis of rotation of an object, y is the vertical coordinate, and 
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Rx denotes the perpendicular distance from the y-axis to the 
surface of an object for a given (α,y) pair. SSF for a 3D model 
is thus similar to a 2D image, for the simplified mesh 
representation considered here, with f(x,y) replaced by Rx(α,y).  
Also, the appropriate scaling along the horizontal and vertical 
directions can be significantly different, depending on the 
variance of the sample points for a given region. Thus, 
Equations (1) and (3) need to be modified to (4) and (5):  
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For uniform sample points, φ and ψ equal 1, but for 
irregular sampling, φ and ψ are used to accommodate the 
variable inter-sample distance along different axes. Note that 
in the actual implementation we use two passes of 1-D filters, 
since all the filters discussed above are separable. The vertices 
are first smoothed along the x-axis and then the resulting 
values are filtered once more along the y-axis. Fig. 4 shows the 
face features, of a head model, changing towards a smoother 
spherical surface when going from low to high scales (left to 
right). The original mesh contains 1,872 vertices and 3,672 
faces. The other five meshes have 2,226, 2,108, 1,948, 1,624 
and 1,190 faces respectively. 

 
Fig. 4: Increasing scales from left to right (Top) 3D mesh with texture, 
(Middle) 3D mesh and (Bottom) feature points extracted at each level. 

III. THE TEXMESH MODEL 
Many studies emphasized the importance of million of 

triangles to preserve fine details, but ignored the basic fact that 
high resolution real texture have been shown to have more 
impact on perceptual quality in 3D visualization [27][37][41]. 
In view of the size of texture data, compressing high-resolution 
texture is essential for on-line transmission given limited 
bandwidth. An integrated approach, based on feature point 
extraction and distribution, is proposed in this paper.  

Feature points in our TexMesh model is defined as a group 
of vertices, which can best represent the geometry of a 3D 
model at a given viewing distance. In Fig. 4, for example, the 
original head model contains 1872 feature points (scale S0). 
After removing 1196 vertices, it is represented by 676 feature 
points at scale S20. At any scale Si, feature points are detected 
by applying LoG. Vertices creating zero crossings are recorded 
as feature points and assigned the value i. Each feature point is 

represented by three components: (i, (tx,ty), (gx,gy,gz)). The 
second and third components are the 2D texture and 3D vertex 
coordinates, respectively. Vertices with stronger persistence 
will have higher i values (higher priority). During 
simplification, features of low priority are first removed, 
leaving more prominent features at higher scales. We apply 
iterative edge collapse operations to generate each simplified 
version. During refinement, features of higher priority are 
inserted first into the coarse model. Since real texture mapping 
is used in the TexMesh model, texture border has to be taken 
into account during the simplification process. Vertices 
associated with border texels are removed only if an operation 
does not distort the texture pattern. Preprocessing generates a 
scale map and a fragment map. The scale map records the 
feature points at each scale, and the fragment map records the 
feature point distribution in each texture fragment. 

A. Scale Map 

 
Fig.5: (Left) Texture pattern of a head model associated with the scanned 
signal, and (Right) scanned laser signal of the head model generated by the 
Zoomage 3D scanner. 

Mesh vertices are derived from the signals generated by 3D 
scanners. Fig. 5 (right) shows an example of the scanned 
signal, which is processed to compute the depth information. 
Putting aside the depth information (z-coordinate), N vertices 
can be sorted and assigned unique ids L, i.e., 0 ≤ L < N, based 
on their y then x coordinates. A Scale Map is a 2D structure 
storing the N vertices in rows and columns corresponding to 
the y and x values respectively. The default value for each 
vertex is 0 corresponding to scale 0 (original signal). At each 
scale Si only feature points detected at that scale are updated 
with the value i. During preprocessing, Gaussian filters with 
increasing sigma values σi are used from scale S0 to Smax, i.e., 0 
≤ i ≤ max, with Smax corresponding to scale at infinity. Zero 
crossings are detected from the filtered space Gi where G0 
represents the set of original unfiltered range data. A priority 
queue is implemented to store feature points in decreasing i 
values. Starting from a coarse model, feature points not 
already included in the mesh can be extracted from the priority 
queue to refine the model progressively.  

Decimation and refinement are performed using edge 
collapse and vertex split operations. There are two main 
differences between our edge collapse/vertex split and that 
used in progressive meshes [24]: (1) There is no vertex 
relocation between different level of detail in our TexMesh; all 
vertices at a coarse level is a subset of those at a finer level.  
Hoppe’s vertex split operation generates two new vertex 
locations in the refined object to replace one vertex in the 
coarser object.  (2) In progressive meshes, the minimum 
energy cost, recalculated each time a new vertex is introduced 
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in an edge collapse operation, affects the choice of the next 
collapsing edge. In the TexMesh model, the order of 
collapsing edges follows the priority predetermined by 
applying SSF on the original 3D surface.  

Vertex VR is removed by integrating with its closest 
neighbor VC, bringing the edges with it (Fig. 6).  

 
Fig. 6: (Left) A finer version before VR is removed, and (Right) A coarser 
version after removing VR. 

Vertex VR and associated information are transmitted during 
refinement to reconstruct the fine version.  

B. Fragmentation Approach for Texture Transmission 
The TexMesh model associates texture reduction with mesh 

simplification. In a 3D object, with full color real texture, there 
are two components that can be filtered  the mesh and the 
texture. We determine the texture quality ),( yxqi of a 
fragment (x,y) based on the associated feature point 
distribution (x,y)ηi , which has a value ∈ [0,1], and is 
mapped onto a quality range. For example, in the current 
implementation, we use the JPEG quality scale [0%, 100%]. 
While wavelet coding applies to the entire image and is 
geometry-independent, our approach supports variable quality 
determined by the density of surface structures. Note that we 
use JPEG for convenience and wide support on the web and in 
JAVA; however, standards such as JPEG2000 can be used as 
well in the future to code fragments. 

The texture image can be transmitted as one block or a 
collection of sub-blocks. The advantage of dividing into sub-
blocks is to make use of distributed networks and apply 
variable qualities to different texture regions as explained 
below. The main concern is whether fragmentation will 
increase the overall volume of transmitted data. In this section, 
we will show that sub-dividing into smaller blocks of optimal 
dimension does not increase the overall volume for high-
resolution texture images. Instead, the sub-block approach 
supports bandwidth and quality adaptation. After generating 
the scale map, vertices are distributed onto the corresponding 
sub-block in a fragment map based on their texel coordinates. 

C. Fragment Map and Variable Texture Quality 
The image texture is fragmented into Nx*Ny pieces after 

determining the optimal size of a fragment. To apply JPEG 
compression efficiently, keeping in mind the size of macro-
blocks, the optimal dimension of a fragment is chosen as a 
multiple of 16. The entire texture is also adjusted so that there 
is no partial fragment. For example, texture with dimension of 
4800*1600 pixels can be divided into 7,500 fragments of size 
32*32 pixels.  Fragments are arranged in a matrix with Ny rows 
and Nx columns. Since each 3D vertex is associated with a 2D 
texel, it is possible to distribute the vertices into the Nx*Ny 

fragments. We used five texture patterns (Fig. 7) to compare 
the fragmented and non-fragmented sizes for different qualities 
using the Intel JPEG compression library. Each fragment had a 
dimension of 16*16 pixels. The 24-bit RGB true color texture 
image was read into memory and partitioned into N fragments. 
These fragments were compressed independently at quality Q 
using the Intel JPEG compression algorithm (Q = 20%, 40%, 
50% and 60% were used in the experiments), and saved as 
individual JPEG files. The total size of these JPEG files was 
recorded as sum of fragments. The texture image, now 
composed of compressed patches, was output as one JPEG file 
without further compression. The size of this file was recorded 
as non-fragmented. Experimental results (Fig.7), using five 
different texture images, show that for high-resolution texture 
(over 5002 pixels), the fragmentation approach does not 
increase the total amount of data transmitted. 

 
Fig. 7: Experimental results show that sum of fragments of optimal size is less 
than the size of a corresponding non-fragmented file for high resolution 
texture. 

The fragmentation approach also supports distributed 
transmission. To get around network bottlenecks, applications 
can select different route(s) to transmit, or benefit from multi-
servers retrieval [2], by storing texture in multiple repositories. 
Instead of requesting an image from a single server, fragments 
of an image can be retrieved from multiple servers in a 
distributed network [4] and reassembled. Since the texture data 
in a TexMesh is organized in fragments, the server can select 
less congested routes to transmit fragments. 

Since the HVS is less sensitive to details further away, the 
texture quality Qi at each scale Si needs to increase only when i 
decreases towards a finer model. For the discussion in this 
paper, we use viewing distance to represent the distance 
between the 3D object and the viewing platform in the virtual 
world, which is different from the distance between the viewer 
and the display device. Given a viewing distance, the 
corresponding Si and Qi are selected. Instead of applying 
uniform quality to all fragments, a variable approach is used so 
that texture quality of each fragment (x,y) varies depending on 
the feature point distribution associated with it. We use the 
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following grenade and nutcracker models to illustrate how the 
distribution of feature points affects the perceptual quality of 
texture. In Fig.8 c & d, the grenade has vertical structures on 
the surface, and therefore the feature point distribution is 
higher than the back of the nutcracker (Fig.8 a & b), which is 
comparatively flat. Note that even if the texture quality is 
reduced to half, there is no significant perceptual degradation 
on the nutcracker. However, the grenade on the right (Fig.8 d) 
shows noticeably lower perceptual quality. While the 
difference in quality between the grenades is obvious, the 
degraded shiny patch under the belt of the nutcracker (Fig.8 b) 
is not noticeable. Based on this finding we adopt a variable 
approach by applying different qualities on texture fragments 
depending on the feature point distribution, instead of applying 
the same quality to every fragment. Furthermore, the variable 
qualities are adjusted adaptively based on the current 
bandwidth. An adaptive approach is necessary when 
transmitting data on the Internet because bandwidth fluctuates 
and can adversely affect the expected quality of service (QoS). 

 
           (a)                          (b)                        (c)                     (d) 

Fig. 8: A snap shot of the nutcracker 3D model from the back (a and b), and 
the military grenade model (c and d), with original texture quality (a and c), 
and half of the original texture quality (b and d).  

Before explaining how variable qualities are assigned to 
different fragments, we define the following terms:  
Notation 
Si − Scale i , i.e., 0 ≤ i ≤ n where S0  is the original signal and 
Sn = Smax is the scale at infinity. 
∆Q − Quality tolerance limit for each scale controlled by an 
upper and a lower bound. Analogous to the depth of field in 
photography, outside which an object is out of focus, ∆Q is the 
tolerance range when displaying 3D objects at a given 
distance.  
Qi − Default texture quality associated with scale Si, by 
mapping [S0, Smax] to a quality range, e.g. [100%, 0%] for 
JPEG quality. 
(x,y) − x and y are the coordinates in the Nx*Ny fragment map. 

),( yxqi − Texture quality of fragment (x,y) at Si. 
fi(x,y) − Number of feature points in fragment (x,y) at scale Si. 

max
if − The maximum number of feature points in a 

fragment at scale Si. 
min

if  − The minimum number of feature points in a fragment 
at scale Si. 

(x,y)ηi  − Normalized value of fi(x,y). 

iη − The mean of the normalized values ηi(x,y). 
Γ −−−− Feature point distribution threshold, i.e. 0 ≤ Γ ≤ 1, above 

which ),( yxqi > Qi, and below which ),( yxqi < Qi. 
di(x,y) − Data size of fragment (x,y) at Si. 
Di − Data size of all fragments at Si. 

A 3D object has the highest quality at S0 and lowest quality 
at Smax. A quality range, e.g. [100%, 0%] for JPEG, can be 
mapped onto [S0, Smax]. A linear mapping is employed in the 
current implementation for simplicity. A default texture quality 
Qi can be obtained based on Si. At scale i, fi(x,y) is normalized 
as: 

minmax

min
ii

ii
i

ff

f(x,y)f
(x,y)

−

−
=η  (6) 

The texture quality ),( yxqi of fragment (x,y) at scale Si is 
computed as: 

Γ) ∆Q(x,y)(Q ii −+ η  (7) 

 
Fig. 9: Different texture patterns were tested to show how decreasing 
fragment data size relates to reducing quality. 

The data size of a texture fragment di(x,y) decreases when 
its quality qi(x,y) is reduced (Fig. 9). Instead of applying the 
same quality to every fragment, we apply variable qualities. 

The threshold Γ is first set to iη ∈ [0,1]. Fragments having 
feature point distribution equal to the threshold is assigned the 
quality Qi, above the threshold have a quality higher than Qi, 
and below the threshold have a quality lower than Qi. By 
increasing the threshold, more fragments will fall below 
quality Qi, and thus the total data size of all fragments Di will 
decrease. On the other hand, by decreasing the threshold, more 
fragments will have quality higher than Qi, and Di will 
increase. ∆Q controls the deviation (+/-) from Qi constrained 
by an upper and a lower bound. Regions on the 3D surface 
with higher feature point distribution are displayed with higher 
quality, and less populated regions are displayed with lower 
quality texture. A selected range of thresholds is used to 
estimate the data size of different combination of qualities. 
Such information is stored in a lookup table (LUT). During 
online transmission, the target data size is computed based on 
an estimated bandwidth. The quality set from the LUT best 
matching the target size is used for bandwidth adaptation. 

Our feature extraction and fragmentation approach works 
with an adaptive transmission strategy; such as the Harmonic 
Time Compensation Algorithm (HTCA) in [6]. The HTCA 
defines Π as the deviation from a given time limit for the 
entire transmission period. It can be proved that Π is bounded 
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by: 
nT∆  + ( 2/1−∆ nT ) + Λ+ |))ln(|ln088.1( n  (8) 

Given n fragments, Λ is the average difference between the 
estimated and actual transmission time ∆Tj for the first n-1 
fragments, i.e., 

Λ = 
1

1

1

−

∆∑
−

=

n

T
n

j
j

. (9) 

After testing with three sets of bandwidth values extracted 
from an Ethernet connection, it was shown that the overall 
time deviation is within 1% of the defined time limit. Details 
of the proof and experiments can be seen in [6]. 

IV. VISUAL PERCEPTION OF MESH REFINEMENT 
Since the HVS is insensitive to minute details below a 

certain visual threshold, a coarser mesh should be used instead 
of a finer one, to save computation and network resources, if 
they are visually similar. In this section, we will show that for 
some scales it is possible to reduce the mesh resolution, 
without degrading visual quality.   

 
Fig. 10: SSF Convergence Analysis – the difference between the maximum 
and minimum scaled values diminishes during the smoothing process as the 
scale increases. 

Based on scale-space theory, the number of feature points 
(structures in the sample space) decreases as scale level 
increases. Different LOD can be generated, by varying the σ 
value in Equation (4). However, different 3D models have 
different surface structures and thus the maximum σ value 
(σmax) applied to achieve a sufficiently smoothed surface is 
different. To determine σmax, we recorded the rate of 
convergence while performing SSF. Fig. 10 is an example of 
different convergence rates in four sets of sample values, 
extracted from (a) a dense head, (b) a dense nutcracker, (c) a 
simplified head and (d) a simplified nutcracker object. 

For increasing values of σ on the horizontal axis, the 
vertical axis represents the difference between the maximum 
and minimum scaled values. In other words, a difference of 0 
means 100% smoothing. Let us define a convergence threshold 
εconv > 0. There are two observations: 

(1) When the number of sample values increases, σmax also 
increases. Samples (a) and (b) contain more sample values and 
require a higher σmax to reach εconv than samples (c) and (d). 

(2) Different models have different surface features and 

require different σmax to reach εconv. 

A. Perceptual Evaluation Experiments and Analysis of 
Result based on the Human Visual System 
In the perceptual experiments, the visual stimuli were 360° 

view-independent texture-mapped 3D objects. The 
illumination and texture resolution were fixed for the visual 
stimuli, and the judges had to decide whether the simplified 
object could be viewed at a closer distance without noticeable 
distortion. Since the stimuli had the same illumination, contrast 
sensitivity did not affect our result. Visual acuity is 
significantly higher at the fovea than in the visual periphery 
[42], and is an important factor when considering gaze-
directed perceptual evaluation. However, our rotating 3D 
objects were view-independent, balancing the visual acuity 
between the fovea and its periphery after an object had rotated 
a complete cycle. Until recently [37], perceptual comparisons 
in the literature have focused on view-dependent display, 
which shows only a limited number of silhouettes. By contrast, 
using a 360° view allows all silhouettes to be examined. 

Viewing distance is defined from 0 to infinity where an 
object vanishes. For each object, the scales generated by value 
σ ∈ [0, σmax] are mapped onto corresponding distances in the 
range [0, ∞]. In the experiments, we used 20 scales in addition 
to the original signal to cover this range so that S0 corresponds 
to σ = 0 and Smax (S20) corresponds to σmax. 

In the experiments, a simplified version of the 3D object 
was generated and displayed at a distance related linearly with 
its scale, i.e. S0 is closest and Smax is farthest. Judges had to 
decide whether the coarser version on the right was 
perceptually similar to the original version on the left. If no, 
they moved the simplified version away to a satisfactory 
position. If yes, the judges moved it closer until there was a 
noticeable distortion. Both objects were rotating, so that the 
judges could compare a complete 360° view. For each of the 
five objects (nutcracker, head, dog, grenade and vase), a 
number of simplified versions were randomly generated. 
Preliminary results suggest that, in some cases, a coarser 
version can be used. When plotting the function between 
distance and scale, it is very close to a step shape (Fig.11). The 
x-axis is the scale and y-axis is the distance with zero being the 
closest. The distance increases in the negative direction.  

We analyze the result by dividing the graph into alternate 
red (perceptible) and green (imperceptible) zones, with the red 
zone corresponding to the slope and the green zone 
corresponding to the comparatively flat portion. In the red 
zone, elimination of perceptually important feature points 
causes a noticeable degradation in visual quality. While in the 
green zone, feature points eliminated do not have significant 
perceptual effect. For example, changing the scale from B to A 
does not improve perceptual quality, while refining from C to 
B has significant impact. For each object, the step function is 
unique, containing more or less steps depending on the surface 
features of the object. The step function suggests that 
perceptually less important data can be suppressed during 
refinement, using major scales (all those in the red perceptible 
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zone) to represent LOD. 

 
Fig.11: Preliminary results show that at a given distance, different scales can 
have similar visual quality. Scale relating to distance is close to a step 
function. 

Given a distance d, we locate the corresponding scale Si. If 
Si falls into a green zone, the rightmost major scale is selected, 
because using other scales (minor scales) in the zone does not 
improve visual quality. If Si falls into a red zone, Si is used 
because each scale in the zone is a major scale. 

The step function is consistent with the convergence 
property of SSF shown in Fig. 10. We already noted that 
objects with more scan-points (samples a & b) take longer to 
converge to a predefined value εconv, but more importantly, for 
each sample, the convergence rate is not constant. Since the 
HVS is insensitive to minute changes below a certain limit 
(e.g. the convergence rate between i and j), refining the scale 
from 2 to 1 will not have significant impact on the visual 
quality. However, the convergence rate between j and k 
indicates a significant effect on visual quality with changing 
scale. 

B. Mesh Refinement based on Major Scales 
When a 3D object moves closer to the viewer, the mesh 

scale is upgraded only if the refined mesh improves visual 
quality. Reddy approximates the contrast sensitivity function 
(CSF) in dynamic scenes to optimize the amount of detail 
removed from the scene without the user noticing [60]. By 
contrast, our method is designed for comparatively static 3D 
objects. To determine whether mesh refinement should be 
performed requires measuring perceptual impact. Adding or 
deleting a structure generates a stimulus to human vision. To 
compare the perceptual impacts of these stimuli, the dimension 
of a structure can be used as a visual cue. In each edge 
collapse operation during preprocessing, when a vertex VR is 
removed and integrated with its closest neighbor VC, the 
surface change is proportional to the distance ρR between VR 

and the average plane formed by its neighbors. ρR is defined as 
the perceptual value of VR. If both VPVQ and VQVC collapse, 
the perceptual value of the combined stimulus is the cumulated 
sum of ρP and ρQ (Fig. 12).  

 
Fig.12 Vertices VR, VP and VQ have perceptual values ρR, ρP and ρQ 
respectively. 

Let ∆℘ be the maximum perceptual value when refining 
from Si to Si-1, and ℘ be the length of the cross-section of the 

3D object in the direction of ∆℘. When viewed on the client’s 
display device, the extension ∆℘ generates an angle ∆θ as a 
stimulus, increasing the original angle θ cast by ℘ (Fig. 13). 
The Difference Threshold K℘, or Just Noticeable Difference 
(JND), is the minimum change in perceptual value in order to 
produce a noticeable variation in visual experience. Weber’s 
Law [58] states that the size of the JND is a constant 
proportional to the original stimulus value. Similar to intensity 
contrast, we apply Weber’s Law on perceptual value, i.e., 

K=
℘
℘∆

 (10) 

If K > K℘, perceptual impact is significant and Si is refined to 
Si-1. Weber’s Law can be applied to a variety of stimuli, 
including brightness, loudness, mass, line length, size, etc. 

 
Fig.13: To evaluate the impact of perceptual values ∆℘, by comparing 
∆℘/℘ with the difference threshold. 

Previous refinement techniques assume that visual quality 
increases when the number of vertices increases. We show by 
perceptual experiment that geometrically different meshes can 
be perceptually similar. Bandwidth should be allocated to 
texture data if a denser mesh does not improve visual quality. 

Another approach is to follow the argument that humans 
naturally describe an object as consisting of parts and infer 3D 
shapes of these parts [59], and segment the object into 
corresponding parts (skeletonization). ∆ρ is computed by 
dividing the displacement of VR by the shortest distance from 
VC to the skeleton, when collapsing VR onto VC. For spherical –
like object, the skeleton can be represented by the center of the 
object. Instead of computing the fraction ∆ρ using linear 
measurements, an alternative is to use the quadric error 
generated by removing VR. We performed 361 perceptual 
evaluations on the nutcracker object (Fig. 1) involving twenty 
judges, and found that the threshold K℘ is approximately 
0.096 with a correlation coefficient of 95%, when using linear 
measurement to compute ∆ρ. The result shows that the linear 
metric predicts visual quality well, closely following human 
perception. 

Based on this preliminary finding, we are extending our 
effort to increase the number of judges and 3D models to 
further verify the difference threshold for mesh refinement. We 
expect that texture resolution and complexity will affect the 
threshold. This is an issue we will address in future 
experiments. 

V. AN INTEGRATED FRAMEWORK 
Online 3D visualization is an expanding area of multimedia 
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research covering graphics, human perception and network 
transmission. Quality and bandwidth adaptation is important in 
3D textured mesh simplification. Short-term fluctuations are 
difficult to adapt. In fact, for applications using small images 
and short transmission time, applying an historic average to 
estimate the network bandwidth is sufficient [8]. Our method 
addresses the transmission of high-resolution images where the 
transmission time is long. An increasingly popular area of 
research is related to Tele-conferencing, where artists, 
designers, physicians, surgeons, etc. can exchange ideas 
remotely. In order for the participants to edit a 3D object 
collaboratively [7], the entire object needs to be transmitted 
before editing, so that a complete 360° view is available to 
every participant.  

To handle longer-term fluctuations, an optimal bandwidth 
monitoring approach was suggested [56] to provide more 
accurate bandwidth estimation by sacrificing a portion of the 
time to transmit test data. Our adaptive approach does not need 
to use test packets. Instead, bandwidth is efficiently utilized by 
adjusting the quality of the fragments not yet transmitted based 
on feedback about the traffic. The entire texture map is divided 
into fragments of optimal size. Given a viewing distance and a 
historic average bandwidth, the corresponding scale and a 
default texture quality are selected. The first fragment is 
transmitted with the default quality. The idea is to re-estimate 
the current bandwidth based on the transmission time of the 
previous fragment(s). The server continues to transmit, until a 
new update is available. The current bandwidth is then used to 
re-compute the qualities of the remaining fragments. The over 
or under estimation time from pervious fragment(s) is 
distributed to the remaining fragments. This adaptive strategy 
ensures that when the transmission is completed the overall 
time discrepancy, compared with the predefined time limit, is 
minimized [6].  

In recent work [37], it was found that improving mesh 
resolution improves perceptual quality following an 
exponential curve whereas enhancing texture relates to 
perceptual quality linearly. Based on this finding and the fact 
that the texture component in a 3D image requires greater 
storage or bandwidth for communication, we use SSF analysis 
to integrate texture reduction with mesh simplification. The 
approach can be summarized as follows: 
Preprocessing 
(a) Perform a SSF analysis of the 3D object and identify 
regions of strong persistent structures vs. regions of small 
surface variations, at different scales.  
(b) Generate a priority list of feature points from strong to 
weak persistence. Compute the perceptual value associated 
with each deleted feature point between scales, and determine 
the maximum.  
(c) Divide the model texture into fragments of optimal size. 
Generate a fragment map for each scale Si by distributing the 
feature points onto the corresponding texture fragment. 
(d) For each scale Si use a lookup table to record the fragment 
data size, and associated qualities for a selected range of Γ.  

Runtime processing 
(a) Given a viewing distance, obtain the corresponding scale 
Si. Shift Si to a coarser version if the change does not affect 
visual quality.  
(b) Use the initial bandwidth (historic average) B0, and T0 to 
locate the best matching set of texture fragments in the lookup 
table. T0 is the given time limit minus the time required to 
transmit the mesh data. 
(c) Adjust the texture quality of each fragment using an 
adaptive approach and transmit the texture fragments.  
(d) Client site recombines fragments and renders the texture-
mapped 3D model. 

VI. CONCLUSION AND FUTURE WORK 
The TexMesh model proposed in this paper integrates mesh 

simplification and texture reduction based on scale-space 
analysis. We apply LoG to detect zero-crossings at each scale 
and generate statistics including a scale map and fragment map 
during preprocessing. These statistics are used during runtime 
for efficient extraction and transmission of 3D data. Feature 
points are transmitted only if they contribute to visual quality. 
Variable qualities applied to texture fragments, determined by 
feature point distribution, are readjusted during transmission to 
adapt to fluctuations in bandwidth. Experimental results show 
that this adaptive approach utilizes bandwidth more efficiently, 
and provides better control on QoS. 

Packet loss during transmission is a common problem. 
When no other data is competing for bandwidth, redundant 
mesh data can ensure that the rendered quality will not be 
significantly affected by missing vertices. Since our method is 
designed for transmitting a 3D textured mesh, each 3D vertex 
is associated with a 2D texel. By transmitting the vertex and 
texel coordinates in separate packets, the (x,y) coordinates, if 
lost, can be estimated based on its texel counterpart received in 
a separate packet. Recall that feature points in the priority 
queue represent decreasing structure sizes. Therefore the depth 
component, z, can be estimated by taking the average of the 
previous and next feature points. However, this packet loss 
strategy works only when the application can tolerate a certain 
degree of estimation error. For applications, which require 
high precision, retransmission is more appropriate. 

The step function relating scales with a given distance, 
which is consistent with the convergence property of scale-
space filtering, suggests an efficient way to suppress redundant 
data during mesh refinement. Simplification techniques in the 
literature often use number of vertices, triangles, or a 
quantitative metric to measure efficiency. We show by 
experiments that perceptual quality is a more reliable measure 
when the HVS is involved. 

View-dependent rendering, when used in a user 
collaboration situation [7], requires the server to keep track of 
a large number of different rendered views and transmit 
different sets of edited data based on each viewpoint. There is 
a trade-off between rendering the complete object at the outset 
and on-demand. For example, when the user decides to view 
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high-resolution medical data, museum exhibits, E-commerce 
products, etc., reserving time at the beginning to download the 
complete object enables swift subsequent navigation. The 
alternative is to wait for incremental update after each change 
of view. In future experiments, we will incorporate view-
dependent perceptual evaluations to improve our results. 
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