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Abstract: Using stereo disparity or depth information to detect and track moving objects is receiving increasing attention in recent
years. However, this approach suffers from some difficulties, such as synchronisation between two cameras and doubling of the
image-data size. Besides, traditional stereo-imaging systems have a limited field of view (FOV), which means that they need to
rotate the cameras when an object moves out of view. In this research, the authors present a depth-space partitioning algorithm for
performing object tracking using single-camera omni-stereo imaging system. The proposed method uses a catadioptric omni-
directional stereo-imaging system to capture omni-stereo image ‘pairs.’ This imaging system has 3608 FOV, avoiding the
need for rotating cameras when tracking a moving object. In order to estimate omni-stereo disparity, the authors present a
depth-space partitioning strategy. It partitions three-dimensional depth space with a series of co-axial cylinders, models the
disparity estimation as a pixel-labelling problem and establishes an energy minimisation function for solving this problem
using graph cuts optimisation. Based on the omni-stereo disparity-estimation results, the authors detect and track-moving
objects based on omni-stereo disparity motion vector, which is the difference between two consecutive disparity maps.
Experiments on moving car tracking justify the proposed method.

1 Introduction

Object tracking is widely used in applications such as
intelligent video surveillance, human–computer interface
and intelligent transport systems [1, 2]. During the last
two decades, there have been numerous studies on
detecting and tracking objects in a sequence of monocular
images. Yilmaz et al. [3] give a systematic survey on
object tracking. Traditional features used in object tracking
include colour, edges, optical flow, texture and their
combinations [4, 5]. Recently some new features are
introduced for object tracking, such as scale-invariant feature
transform (SIFT) [6]. However, these features are affected by
environmental variations, such as illumination and background
changes.

Another feature that is becoming popular in object tracking
is disparity or depth in stereo images. Unlike traditional
features, such as colour and texture, disparity information is
more stable and robust against illumination changes for
performing moving-object tracking. Muñoz-Salinas et al.
[7] combine depth and colour information for object
tracking; they also present an approach for multiple people
detection and tracking based on stereo vision [8]. The
authors in [9] create a multi-object tracking system by
combining plan-view projections of depth imagery with
feature-based object appearance models. Fiala and Basu
[10] use panoramic images to determine a mobile robot’s

position and orientation, they present the panoramic Hough
transform to track line features in the scene.

Bae et al. [11] propose a stereo-object-tracking method that
is based on disparity motion vectors (DMVs). They extract
disparity maps from the captured stereo image-pairs, and
then estimate DMV that is defined as the disparity
difference between two consecutive disparity maps. Finally,
as DMV provides larger disparity difference in moving-
target areas than in background areas, therefore the
estimated DMV can be used to detect and track a moving
object. The main drawbacks of this method include: (i) A
small field of view (FOV): when the tracked object moves
out of the FOV, it has to rotate both the stereo cameras to
‘see’ the tracked object. (ii) Uses two cameras to acquire
stereo-image pairs for disparity-map estimation: that
requires extra synchronisation control between cameras,
extra data-transmission channels and hardware costs.

In order to overcome the aforementioned shortcomings, we
propose a depth-space partitioning algorithm to estimate
disparity in a single-camera omni-stereo imaging system,
and then track a moving object based on the estimated
omni-stereo disparity information. In this method, we
capture a 3608 FOV image sequence with a catadioptric
omni-stereo system; then we partition the 3D depth space
into a series of co-axial cylinders for omni-stereo disparity
estimation; finally, a moving object is detected and tracked
using omni-stereo DMV. A critical issue in this process is
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to estimate the omni-stereo disparity, because omni-stereo
disparity estimation is totally different from a traditional
stereo system, we present a depth-space partitioning method
to estimate omni-stereo disparity.

In the first step, we design a single-camera omni-stereo
imaging system to capture omni-stereo image sequence for
object tracking. This imaging system is composed of one
ordinary camera and two vertically-aligned curved mirrors
that acquire images as if they are stereo-image ‘pairs’ by
using only one camera. An image is divided into outer and
inner parts, corresponding to the upper and lower mirrors,
respectively; we can treat these two parts as left and right
images in a traditional stereo system. This imaging system
has two advantages over traditional stereo systems: (i)
instead of using two cameras, it uses only one camera to
capture stereo information into one image at the same time;
(ii) it has a 3608 FOV, making it possible to track-moving
objects without rotating cameras.

In the second step, we estimate the omni-stereo disparity
that will be used for object tracking. Since the omni-stereo
imaging system is totally different from traditional stereo
systems (such as Bae et al. [11]), the calculation of omni-
stereo disparity is also different. To this end, we propose a
three-dimensional (3D) depth-space partitioning approach to
estimate omni-stereo disparity as follows: (i) partitioning
the 3D space with a sequence of co-axial cylinders, with
each cylinder representing a depth or disparity; (ii) model
the omni-stereo disparity-estimation problem as a pixel-
labelling problem [12, 13], the goal is to decide which
cylinder each pixel of the omni-stereo image belongs to;
(iii) establish an energy minimisation function based on
colour difference, piecewise smooth and occlusion
constraints for this pixel-labelling problem and solve this
function using graph cuts optimisation.

In the final step, we detect and track-moving objects based
on the estimated omni-stereo disparity. We subtract two
consecutive omni-stereo disparity maps T and T 2 1 to
obtain the omni-stereo DMV, and then detect candidate
areas of moving objects based on the calculated DMV, and
finally decide on the true areas of objects by computing

common sizes of the candidate areas in consecutive frames
of a DMV; thus, tracking a moving object in every frame.

The main focus of this article is on depth-space partitioning
for omni-stereo object tracking. For simplicity we assume that
there is one moving object to be tracked in this research. In the
experiments, a moving car is driven around the scene
covering a wide FOV, and the proposed method tracks it
without any need for rotating the camera.

The remainder of the paper is organised as follows: Section
2 designs the single-camera omni-stereo imaging system for
object tracking. Omni-stereo disparity estimation based on
depth-space partitioning is presented in Section 3. Section 4
demonstrates object tracking using estimated omni-stereo
disparity. Experimental results are shown in Section
5. Finally, Section 6 concludes this article.

2 Design of a single-camera omni-stereo
system for object tracking

Many computer applications need a wide FOV, such as robot
vision [14–18] and visual surveillance [19, 20]. Catadioptric
omni-directional imaging that provides a 3608 FOV, is useful
for this requirement. In our previous work in [21, 22], we
present a double-lobed mirror for omni-stereo depth
perception. However, the double-lobed mirror has a short
baseline, resulting in low depth resolution. In order to
improve the depth resolution for object tracking, we design
a new single-camera omni-stereo imaging system that has a
longer baseline.

Fig. 1 illustrates the design of a single-camera omni-stereo
imaging system and the captured omni-stereo image for
object tracking. In this design, we extend the conventional
catadioptric omni-directional imaging system to one camera
plus two separate mirrors, the camera and two mirrors are
co-axially placed in a vertical direction.

The single-camera omni-stereo imaging system has
rotational symmetry property; therefore it is sufficient to
consider the radial cross-section for simplicity. As shown in
Fig. 1a, we define the coordinate origin O to be at the
centre of an image plane, the X-axis lies in the image plane,

Fig. 1 Single-camera omni-stereo system and omni-stereo image

a Single-camera omni-stereo system design
b Omni-stereo image
c Practical system
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and the Z-axis is the same as the camera and mirror axis.
The radius and height of the upper mirror are r1 and h1, the
radius and height of the lower mirror are r2 and h2. The
camera focal length is f, the distance from the focal point to
the bottom of the lower mirror is L and the omni-stereo
baseline is D (the distance between bottom points of
the two mirrors). The upper mirror equation is
z ¼ a1x2 + f + L + D, and the lower mirror equation is
z ¼ a2x2 + f + L.

Suppose P is a 3D point in the common view field of both
mirrors, m3, m4 are intersection points of P on the upper and
lower mirrors, p3 ¼ (xp3, 0), p4 ¼ (xp4, 0) are images of P
reflected from the upper and lower mirrors. The lines

m3P
Q

, m4P
Q

are

z − zm3 = tan u3 × (x − xm3)
z − zm4 = tan u4 × (x − xm4)

{
(1)

where

xm3 = (f −
������������������������
f 2 − 4a1|xp3|2(L + D)

√
)/(2a1|xp3|)

zm3 = a1x2
m3 + f + L + D

xm4 = (f −
�������������������
f 2 − 4a2|xp4|2(L)

√
)/(2a2|xp4|)

zm4 = a2x2
m4 + f + L

u3 = 2 arctan(2a1xm3) − arctan(f /|xp3|)
u4 = 2 arctan(2a2xm4) − arctan(f /|xp4|)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

On the other hand, if the coordinates of point P are (m, n),
then the image point p3 ¼ (xp3, 0) of P reflected by the
upper mirror can be determined by

n − z

m − x
=

4a1(−xp3)x + f − 4fa2
1x2

(−xp3) − 4(−xp3)a2
1x2 − 4a1fx

z = a1x2 + f + D + L
z − f

x
= − f

(−xp3)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(3)

Here (x, y) are the coordinates of point m3, the intersection
point of P on the upper mirror. The coordinates of image
point p4 ¼ (xm3, 0) can be determined accordingly.

Fig. 1b shows an omni-stereo image acquired with the single-
camera omni-stereo imaging system. There are two ‘images’ of a
3D object (such as the person) in the omni-stereo image,
reflected by the upper mirror and lower mirror separately.
Thus, we divide the omni-stereo image into two parts, namely
outer and inner parts, conceptually corresponding to the left
and right images in traditional stereo vision.

Fig. 1c shows a practical omni-stereo system for object
tracking, where the upper and lower mirror radii are r1 ¼ 5
and r2 ¼ 1.8, their 3D shapes are x2 + y2 ¼ 7z and
x2 + y2 ¼ 2.4z, the distance between bottom points of the
two mirrors is D ¼ 10 inches. Finally, the camera focal
length f and the distance from focus to the bottom point of
the lower mirror L are partially dependent on the camera used.

3 Omni-stereo disparity estimation based on
depth-space partitioning

In order to use the disparity information for object tracking,
we need to perform disparity estimation from the

omni-stereo image. Traditional stereo-disparity estimation is
based on pinhole cameras, where perspective projection is
applied. However, the single-camera omni-stereo imaging
system does not fulfil the perspective-projection conditions,
therefore traditional methods for estimating stereo disparity
can no longer be used to estimate the disparity in a single-
camera omni-stereo imaging system.

In this research, we estimate omni-stereo disparity based on
depth space partitioning and energy minimisation. First of all,
we partition the depth space with a sequence of virtual co-
axial cylinders, these cylinders share the same axis as the
omni-stereo camera axis; each cylinder represents all the 3D
space points that have the same depth with respect to the
axis, and the radius of the cylinder is the depth value. Then,
we model the disparity-estimation problem as a pixel-
labelling problem [12, 13], where label stands for the
cylinder, and the goal is to find a labelling that assigns each
pixel in the outer and inner parts of an omni-stereo image a
label, ensuring that this labelling fulfils omni-stereo depth
constraints and observations. Therefore in the next step, we
formulate the omni-stereo disparity-estimation problem as
energy minimisation of colour difference, piecewise smooth
and occlusion constraints. Finally, we solve the energy
minimisation using graph cuts optimisation.

3.1 Scene-space partitioning with co-axial
cylinders

In the single-camera omni-stereo, we define the depth of a 3D
scene point as the shortest distance from this point to the axis
of a single-camera omni-stereo system. Therefore if we create
a virtual cylinder and make its axis coincide with the axis of a
single-camera omni-stereo system, then all the 3D space
points on the cylinder surface have the same depth, and the
depth value is simply the radius of this cylinder.

Based on this observation, we partition the 3D scene with a
sequence of co-axial cylinders, and we use the cylinders to
represent the depth and disparity in the single-camera omni-
stereo. Thus, the problem of disparity estimation is
converted to deciding which cylinder each pixel of the
omni-stereo image belongs to, and this concept is illustrated
in Fig. 2. For a 3D point P on cylinder ℓp, there is one
image in both outer part and inner part of the omni-stereo
image, respectively, denoted by po and pi.

The number of co-axial cylinders depends on two major
factors: (i) Visible scene depth from the omni-stereo
system; (ii) the interval between two adjacent cylinders. The
omni-stereo system ‘sees’ interesting objects (such as
persons, cars) within about 50 m around in outside scenario.
Also, we set the interval between two adjacent cylinders as
0.2 m uniformly, which is sufficient for object detection and
tracking, because the width of tracked objects is usually
larger than 0.2 m. Therefore 250 co-axial cylinders are used
in this work.

3.2 Modelling the omni-stereo disparity-estimation
problem

In this section, we model the omni-stereo disparity-estimation
problem as a pixel-labelling problem by assigning a virtual
cylinder to each pixel in the outer and inner parts of an
omni-stereo image. We define the following notation for
this model:

† N, total number of co-axial virtual cylinders.
† ℓi, an individual virtual cylinder (called a label).
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† w, the set of co-axial virtual cylinders ℓi, where
w = {ℓi|i = 1, 2, . . . , N}.
† Iouter, all the pixels in the outer part of a single-camera
omni-stereo image.
† Iinner, all the pixels in the inner part of a single-camera
omni-stereo image.

Based on the above notation, the goal of the disparity-
estimation problem is to find a labelling f that assigns each
pixel p [ Iouter < Iinner with a cylinder ℓp [ w, where f
satisfies the omni-stereo depth constraints and observations.
The constraints and observations on an omni-stereo image
include: (i) piecewise smooth depth values, (ii) occlusion
constraint and (iii) minimum colour difference between
corresponding points. We describe these constraints and
observations in the next section.

3.3 Energy minimisation of omni-stereo disparity

After modelling the omni-stereo disparity-estimation problem
as a pixel-labelling problem, we solve it through energy
minimisation with either local or global methods. The
authors of [13, 23] prove that global optimisation methods
gives better results than local ones, so we use global
methods to solve omni-stereo disparity-estimation problem.
A simple but useful case of smoothness constraint is the
Potts model [21, 24], which assumes that the majority of
nearby pixels have the same label. Compared with other
energy-minimisation methods, for example, convergent tree

reweighted message passing [25] and belief propagation
[26], the graph-cuts based optimisation performs best in
terms of speed and accuracy. Therefore we select graph-cuts
optimisation to solve the omni-stereo disparity-estimation
problem in this research. A critical part of graph-cuts
optimisation is constructing an energy-minimisation
function based on the particular constraints and
observations of the problem that are discussed in the
following sub-sections.

3.3.1 Piecewise smooth constraint: Disparity and depth
tend to be piecewise smooth; they vary smoothly on the
surface of an object, but change dramatically at object
boundaries. As omni-stereo has different imaging properties
in the radial direction and tangential direction, we define
different piecewise smooth constraints accordingly. Suppose
Esmooth( f ) is the piecewise smooth energy for an omni-
stereo depth-label mapping, Esmooth_r( f ) and Esmooth_t( f )
are the piecewise smooth energy in the radial and tangential
directions, respectively, we then have

Esmooth( f ) = Esmooth r( f ) + Esmooth t( f ) (4)

Because the two mirrors in a single-camera omni-stereo
imaging system are placed vertically, the pixels in radial
directions correspond to vertical 3D space points, so the
vertical points in 3D space have the same disparity or
depth. This situation is similar to traditional stereo imaging,
so we use Potts model [24] to describe the smooth energy

Fig. 2 Depth space partitioning with co-axial cylinders

a Partitioning 3D depth space with co-axial virtual cylinders
b Two images of a 3D space point
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in the radial direction as

Esmooth r(f ) =
∑

{p,q}[Nr

(Kr ∗ Tr(fp = fq)) (5)

where p and q are adjacent pixels in the radial direction; Kr is
a user-defined constant for radial smoothness penalty; Tr(.) is
1 if its argument is true and 0 otherwise.

In the tangential direction, the omni-stereo imaging system
has gradual depth change between tangentially adjacent
pixels, we should allow depth labelling difference in this
direction, so Esmooth_t( f ) is defined as

Esmooth t(f ) =
∑

{p,q,s}[Nt

(Kt ∗ min (Tt, g(|fp + fs − 2fq|

+ |fp − fs|)) (6)

where p, q and s are adjacent pixels in the tangential direction;
Kt is a user defined constant for tangential smoothness
penalty; Tt(.) is 1 if its argument is true and 0 otherwise;
g(.) is a symmetrical convex function; for example, we set
g(.) as an absolute value function in this work.

3.3.2 Occlusion constraint: Fig. 3 demonstrates the
occlusion in a single-camera omni-stereo imaging system.
In this figure, there are two 3D points (p, ℓp) and (q, ℓq),
where (q, ℓq) is occluded by (p, ℓp) in the omni-stereo
image. It is obvious that (q, ℓq) has no matching point in
the outer part of an omni-stereo image. Therefore if a 3D
space point (qi, ℓqi) is an occluded point, then there exists
another 3D space point (pj, ℓpj) satisfying ℓpj , ℓqi and
(pj, ℓqi) = (qi, ℓqi). Therefore the occlusion energy function
can be defined as

Eocc(f ) =
∑

{(p,ℓp),(q,ℓq)}[Rocc

Kocc (7)

where Kocc is a user-defined constant; Rocc is occlusion
relationships, and items {(p, ℓp), (q, ℓq)} satisfy

1. p [ Iouter, q [ Iinner, and p, q have the same radial angle in
an omni-stereo image.

2. ℓp = f (p) also denoted as fp; ℓq = f (q), also denoted as fq;
and ℓp = ℓq.
3. if ℓp . ℓq, then (p, ℓp) = (q, ℓp); if ℓp , ℓq, then
(p, ℓq) = (q, ℓq).

Because p, q are discrete pixel points in the occlusion
model, their corresponding 3D space points (p, ℓp) and
(q, ℓp) are also discrete points. Thus, we define
(p, ℓp) = (q, ℓp) if and only if their Euler distance satisfies
Dis((p, ℓp), (q, ℓq)) , 1, where 1 is a user-defined constant.

3.3.3 Minimum colour difference constraint: In
graph-cuts based optimisation, the disagreement between
labelling f and the observed data is measured by Edata( f ).
Many different energy functions have been proposed in the
literature. The form of Edata( f ) is typically

Edata(f ) =
∑
p[P

Dp(fp) (8)

where Dp measures how well label fp fits pixel p given the
observed data. Colour difference is often used to measure
Dp in a stereo disparity estimation field. We also use colour
difference to define Edata( f ) is this research as

Edata(f ) =
∑

{(p,ℓp),(q,ℓq)}[Rcorres

D(p, q) (9)

where Rcorres is a correspondence relationship, and {(p, ℓp),
(q, ℓq)} is: p [ Iouter, q [ Iinner, ℓp = fp and ℓp = ℓq and
(p, ℓp) = (q, ℓq). D(p, q) is the colour difference between p
and q, and D(p, q) ¼ max{(colourR(p) 2 colourR(q),
(colourG(p) 2 colourG(q), (colourB(p) 2 colourB(q)}.

3.3.4 Integrated graph-cut energy-minimisation
function: Based on the piecewise smooth constraint,
occlusion constraint and minimum colour difference
constraint, we define the final integrated graph-cuts energy
minimisation function as

min E(f ) = min[Esmooth(f ) + Eocc(f ) + Edata(f )] (10)

where Esmooth( f ), Eocc( f ) and Edata( f ) are the smooth,
occlusion and data colour constraints, respectively, as
defined in (4)–(9). Equation (10) is a global minimum-
optimisation problem, and we use the min-cut/max-flow
algorithm introduced by Boykov et al. [12] and Ahuja et al.
[27] to solve this equation.

4 Object tracking based on omni-stereo DMV

4.1 DMV extraction

After we estimate omni-stereo disparity with space-depth
partitioning, we detect and track a moving object using
omni-stereo DMV. In this study, omni-stereo DMV is
defined as a difference between two consecutive omni-
stereo disparity maps frames T 2 1 and T. DMV has a
relatively large change of disparity values in the regions
where a target object is located before and after motion,
whereas it has almost no change of disparity values in
regions where there is no movement, such as in the
background. Thus, we can use this disparity difference to
detect and track moving objects.Fig. 3 Occlusions in a single-camera omni-stereo imaging system
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Fig. 4a shows the overall process of extracting omni-stereo
DMVs from an omni-stereo image sequence, and detecting
candidate object areas. Each omni-image contains outer and
inner parts, corresponding to the ‘left’ and ‘right’ images in
a conventional stereo system. The disparity map sequence is
estimated using the proposed depth-space partitioning
method, and it is based on the outer part of an omni-stereo
image, as shown in Fig. 4a (so there are no inner parts for
disparity maps). Suppose DT is the disparity map of a
single-camera omni-stereo image frame T, and DMVT is the
DMV between disparity maps DT and DT21. Then DMVT

can be calculated as

DMVT = |DT − DT−1| (11)

From each of these DMV maps, we can find areas that have a
large change of disparity values. These areas are created by
target movements, and therefore they are potential locations
for moving objects being tracked.

4.2 Moving object detection and tracking

In this study, we focus on depth-space partitioning for omni-
stereo object tracking, so we assume that there is one moving
object to be tracked for simplicity. Under this assumption,
there are at most two areas that have a relatively large
change of disparity values in each DMV map, and these
two areas are the object’s areas in the two consecutive

frames, respectively. For example, in the candidate area
detection step of Fig. 4a, there are two areas detected in
DMVT, the area labelled as 1 is the object’s area in omni-
stereo image frame T 2 1, and the other area labelled as 2
is the object’s area in omni-stereo image frame T.

Now, the problem is how to decide which one is the object
area of omni-image frames T 2 1 and T? This can be resolved
through a common area-computation process. Fig. 4b shows
the area correspondence for a moving object in omni-stereo
images and DMV maps. In this figure, the car in omni-
stereo image frame T has one candidate area in both DMVT

and DMVT+1, they are Area 2 in DMVT and Area 1′ in
DMVT+1. Therefore these two areas share almost the same
coordinate areas. This characteristic can be used to decide
which candidate area in DMVT is the true object location of
omni-stereo frame T. The main steps of the algorithm are:

Step 1: For two consecutive DMV frames DMVT and
DMVT+1, there are totally four candidate areas detected, we
mark the two candidate areas in DMVT as Cand1T and
Cand2T, the two candidate areas in DMVT+1 as Cand1T+1

and Cand2T+1. For example, Cand1T and Cand2T
corresponds to the areas labelled as 1 and 2 in DMVT of
Fig. 4b, while Cand1T+1 and Cand2T+1 correspond to 1′

and 2′ in DMVT+1 of Fig. 4b.
Step 2: Compute the common areas between the two
candidate areas in DMVT and the two candidate areas in
DMVT+1, so that there are four cases to be computed, they

Fig. 4 Object tracking based on omni-stereo DMV

a DMV extraction and candidate object areas detection
b Correspondence of moving object in omni-stereo images and DMV maps
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are (Cand1T, Cand1T+1), (Cand1T, Cand2T+1), (Cand2T,
Cand1T+1), (Cand2T, Cand2T+1). We define the common
area size of two areas (A1, A2) as the number of pixels that
have the same coordinates, which can be denoted by the
following formulation

Common area size(A1, A2)

= card (p1, p2)

p1 [ A1, p2 [ A2 and

p1 and p2 have the same

coordinate values

∣∣∣∣∣∣∣

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭

⎛
⎜⎝

⎞
⎟⎠

(12)

where card(.) is a function for counting the number of items in
a set. For example, card ({a, b, d}) is three, meaning that there
are three items in the set {a, b, d}.
Step 3: For the four candidate area pairs ( Cand1T ,
Cand1T+1), (Cand1T , Cand2T+1), (Cand2T , Cand1T+1),
(Cand2T , Cand2T+1), compute their common area sizes,
respectively, using (12). Then, select the pair that has the
maximum common area size and the first candidate area in
this pair is just the true object location of omni-stereo
image frame T. For example, in Fig. 4b, the candidate area
pair (2, 1′) has largest common area size than the other
candidate area pairs (1, 1′), (1, 2′) and (2, 2′).

When we carry out the above steps for every omni-stereo
image frame, we find the moving object locations for every
frame, which means tracking the moving object.

5 Experiments

5.1 Depth-estimation error analysis

The assembly and configuration of a single-camera omni-
stereo imaging system will impose depth- and disparity-
estimation errors, and finally affect the moving object
tracking results. From (1), the depth of a 3D space point P
with respect to the omni-stereo imaging system can be
denoted as

z = ( tan u4 × xm4 + ym4 − tan u3 × xm3 − ym3)

/( tan u4 − tan u3) (13)

where xm3, ym4, xm4, ym4,u3 and u4 have the same meaning as
in (1).

According to (1)–(3) and Fig. 1, we know that the
manufacturing error of the two omni-stereo mirrors can be
integrated into a1, a2 (and they are constant values after
manufacturing); the co-axial error of these mirrors can
be integrated into xm3, xm4, the focal distance error can be
included into D, therefore the depth error of z can be
calculated according to D, xm3, xm4. Suppose z ¼ g(D, xm3,
xm4) ¼ (tanu4 × xm4 + ym4 2 tan u3 × xm3 2 ym3)/(tanu4 2
tanu3), the gradient of g(D, xm3, xm4) is ∇g ¼ (∂g/∂D, ∂g/
∂xm3, ∂g/∂xm4), then the error of depth z is

Dz ≃ ∇g · (dx)T = ∂g

∂D
· dD + ∂g

∂xm3

· dxm3 +
∂g

∂xm4

· dxm4

≤ ∂g

∂D

∣∣∣∣
∣∣∣∣ · dD + ∂g

∂xm3

∣∣∣∣
∣∣∣∣ · dxm3 +

∂g

∂xm4

∣∣∣∣
∣∣∣∣ · dxm4 (14)

Based on (14), we obtain the depth error results with
respect to D, a1, a2 and 3D space position (z, w) as shown
in Tables 1–4. Note that when we perform the depth-
estimation error in these tables, the measurement units of z
and D and height are in inches.

Table 1 shows the effect of mirror shape on depth error,
parameters a1, a2 decide the shape of the two mirrors. Here,
we set D ¼ 10 in. and the position of P to be (200, 0).

Table 2 shows the effect of omni-stereo baseline length D
on depth error, where we set a1 ¼ a2 ¼ 3.5 and the position
of P to be (200, 0).

Table 3 gives the effect of 3D space point depth z on depth
estimation error, where D ¼ 10 in. and a1 ¼ a2 ¼ 3.5. In this
table, as the depth z increases from 50 to 200 in, the depth
error Dz increases from 0.172 to 2.387 in., indicating that
the depth error Dz increases faster than the increase in depth
z. Hence, the depth resolution is non-uniform across the
omni-stereo image, the farther away a 3D space point from
the omni-stereo imaging system, the lower the depth
resolution.

Table 4 shows the effect of 3D space point height w on
depth error, where D ¼ 10 in and a1 ¼ a2 ¼ 3.5.

Based on the analytical results in Tables 1–4, we conclude
that: (i) depth error decreases as a1, a2 increase, however, the
omni-stereo FOV decreases; (ii) the longer the omni-stereo
baseline D is, the smaller the depth-error results; (iii) when
other parameters do not change, the depth error increases

Table 1 Depth error with respect to mirrors shape

a1 3.5 3.5 3.5 4

a2 1 1.2 1.5 1.5

xm3 3.300 3.300 3.300 3.767

xm4 0.998 1.196 1.494 1.494

Dz, in 4.661 4.105 3.555 3.343

Dz/z ∗ 1000 23.307 20.526 17.776 16.713

Table 2 Depth error with respect to omni-stereo baseline length

D, in. 5 10 20

xm3 3.384 3.300 3.140

xm4 3.470 3.470 3.470

Dz, in 4.711 2.387 1.227

Dz/z ∗ 1000 23.557 11.935 6.136

Table 3 Depth error with respect to 3D space point depth

z, in. 50 100 150 200

xm3 2.773 3.113 3.237 3.300

xm4 3.3800 3.439 3.459 3.470

Dz, in 0.172 0.624 1.363 2.387

Dz/z ∗ 1000 3.232 6.243 9.085 11.935

Table 4 Depth error with respect to 3D space point height

w, in 220 0 20 40

xm3 2.988 3.300 3.647 4.029

xm4 3.140 3.470 3.834 4.233

Dz, in 2.657 2.387 2.165 1.985

Dz/z ∗ 1000 13.284 11.935 10.827 9.924
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when a 3D space point goes deeper, and the depth error
decreases when a 3D space point obtains higher; and (iv)
depth estimation error is within 2% in all the above cases.

The depth error is also related to the number of co-axial
cylinders used. Generally, if more cylinders are used higher
depth resolution can be achieved, and lower depth error can
be expected. However, using more cylinders can result in
higher computational cost. There are 250 co-axial cylinders
used in this work.

5.2 Depth estimation compared with ground truth

According to depth-estimation error analysis results with
respect to mirror shapes, omni-stereo system baseline
length, 3D space point depth and 3D space point height, as
shown in Tables 1–4, we set a1 ¼ 3.5, a2 ¼ 1.5 and omni-
stereo baseline length D ¼ 10. Then, we manufacture and
assemble the omni-stereo system using these parameters.
Fig. 1c shows the physical omni-stereo system.

Fig. 5a illustrates the procedure for measuring ground truth
depth data; in this work, depth is defined as the distance from
the middle of the omni-stereo system to the point whose depth

is to be measured. Figs. 5b–d show the 16 representative
ground truth points in an omni-stereo image, depth map
image and the corresponding unwarped panoramic image,
respectively.

In the experiments, we select 16 representative points
(Fig. 5b), and measure their depths as ground truth data. All
the representative points selected are on an object such as a
tree or a person. Then, we estimate the depth map of the
omni-stereo image (Fig. 5b), the estimated depth map
image is shown in Fig. 5c. In order to make it easier to
watch the omni-stereo image, we unwarp the outer part of
the omni-stereo image in Fig. 5b, and the resulting
unwarped panoramic image is shown in Fig. 5d.

Table 5 compares the estimated depth with ground-
truth depth for the selected 16 representative points.
According to Table 5, the average depth-estimation error
ratio with respect to ground truth data is 7.51%. We can see
that the average depth-error ratio in Table 5 is higher than
the theoretical results in Tables 1–4; this is because there
are some other errors in a practical omni-stereo system,
such as mirror assembly error, and correspondence
matching error.

Fig. 5 Ground truth and estimated data of representative points

a Depth ground truth measurement procedure
b Ground truth points in omni-stereo image
c Ground truth points in depth map image
d Ground truth points in unwarped panoramic image
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For an omni-stereo image with 500 × 500 resolution, the
average time for performing depth estimation is about
0.35 s. There are two steps to ensure that the proposed
method can be used in object detection and tracking: (i)
carrying out pre-processing on the omni-stereo image
sequence, finding the regions where possible moving
objects may exist, (ii) because these regions occupy only a
portion of the overall omni-stereo image, estimating the
depth of these regions improves the efficiency of depth
estimation for object tracking.

5.3 Moving object tracking

Fig. 1a shows the single-camera omni-stereo imaging system
used in the experiments. Five frames of omni-stereo images
with 500 × 500 resolution are used as the test omni-stereo
images, in which a toy car is moving from one corner to
the opposite corner along the two walls in a room. Fig. 6
illustrates the overall moving object tracking procedure
based on a single-camera omni-stereo DMV. In Fig. 6a,
five frames of omni-stereo images are illustrated. We can

Fig. 6 Single-camera omni-stereo tracking based on DMV

a Omni-stereo image sequence
b Disparity map sequence
c DMV sequence
d Tracking the moving object

Table 5 Depth estimation results compared with ground truth depth data

Representative points p1 p2 p3 p4 p5 p6 p7 p8

ground truth, m 9.65 7.34 8.23 5.51 4.12 7.53 3.12 5.69

estimated depth, 10.34 7.93 7.45 6.03 3.82 7.38 3.42 5.11

depth error ratio, % 7.15 8.04 9.48 9.44 7.28 1.99 9.62 10.19

Representative points p9 p10 p11 p12 p13 p14 p15 p16

ground truth, m 8.54 7.13 4.76 5.42 3.52 3.89 3.54 8.92

estimated depth, m 8.97 7.59 5.07 4.91 3.77 4.08 3.16 9.53

depth error ratio, % 5.04 6.45 6.51 9.41 7.10 4.88 10.73 6.84
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see that there are an outer part and an inner part of the scene in
each omni-stereo image. Fig. 6b shows the disparity maps
estimated from the omni-stereo images, the disparity is
estimated based on the outer part of each omni-stereo
image; this is because the outer part has better resolution.
Then, DMV maps are calculated by computing disparity
differences between two consecutive disparity maps and
candidate areas of the moving object are detected in
Fig. 6c. In the first frame, there is no DMV, because this
frame has no previous frame to perform the disparity
difference. Finally, we decide which candidate area in each
DMV is the true object area and mark the moving object in
the outer part of the omni-stereo image, as shown in Fig. 6d.

Now, we discuss how to decide on true object areas. In
each DMV of Fig. 6c, there are two candidate areas where
a moving object may be located, one is the true location of
an object in the current frame, and the other is the object
location in the previous frame. Table 6 shows the candidate
area coordinates in DMV frames 2–5, where Start(x, y) is
the top-left coordinates of the area and End(x, y) is the
bottom-right coordinates. Based on this information, we can
calculate the common area sizes for candidate area pairs in
consecutive DMVs. The results are shown in Table 7.
Candidate pairs (Cand22, Cand13), (Cand23, Cand14) and
(Cand24, Cand15) have the largest common area in DMV
frames 2, 3 and 4; therefore Cand22, Cand23 and Cand24

are true object locations in omni-stereo image frames 2, 3
and 4.

6 Conclusion

In this article, we proposed using a single-camera omni-stereo
imaging system and a depth-space partitioning method for

object tracing. The single-camera omni-stereo imaging
system captures 3608 FOV omni-stereo image sequence,
ensuring that there is no need to rotate the camera when
tracking a moving object. Since omni-stereo imaging is
totally different from traditional perspective-view imaging,
and traditional disparity-estimation methods cannot be used
for omni-stereo disparity estimation, we propose a depth-
space partitioning method to estimate omni-stereo disparity.
A moving object is tracked using omni-stereo DMV that is
the difference between two consecutive disparity maps. In
future work, we will extend the proposed method to track
multiple moving objects.
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